表 2 40 mg ˙L-1 BPA对照组污泥改变工况后周期末水相和泥相BPA浓度变化趋势1)
2.2 改变工况条件对SBR运行周期末污泥毒性的影响
改变工况后,为考察HRT和SRT缩短对污泥毒性的影响,在33 d的试验中通过发光细菌法测得污泥毒性抑制率并对照分析,结果如图 3所示.
图 3 两工况条件周期末污泥总毒性抑制率变化趋势
如图 3所示,改变工况参数后2~17 d,空白组与BPA对照组污泥总毒性波动较大,但变化幅度与趋势类似; 并在1个污泥龄后即第13 d达到峰值,空白组总毒性抑制率为46.64%和BPA对照组为57.92%.说明污泥毒性的波动是由于工况条件改变而非原水中初始BPA含量引起的.随着试验的进行,两组污泥毒性均呈下降趋势,到20 d左右,污泥特性进入稳定阶段,空白组和BPA对照组污泥总毒性分别维持在13.42%和32.58%附近.对比工况条件改变前后,缩短HRT和SRT且待系统稳定时,污泥总毒性抑制率空白组(13.42%)和BPA对照组(32.58%)低于原工况条件时的33%和43%.
BPA对照组在工况条件改变后,试验初期污泥总毒性不稳定,照比原工况条件稳定期污泥总毒性有所下降,至第4 d总毒性抑制率降至最低(12.01%); 随后迅速反升至43.51%; 接着又持续下降至第9 d(22.10%); 之后再次回升至最高点(57.92%).对照组污泥总毒性抑制率经过了20 d近两个污泥龄的反复升降,系统趋于稳定,污泥总毒性抑制率最终稳定在30%左右.
分析认为,缩短HRT和SRT使系统受到冲击,在经过了2个污泥龄左右时间趋于稳定.试验初期,由于原工况条件下系统内已存在大量有效降解BPA的优势菌群,缩短HRT和SRT促进了其中生长周期短的好氧降解菌大量繁殖生长[23,24,25],系统降解BPA能力有所增加,污泥总毒性持续下降; 同时,生长周期较长的优势菌群受到抑制,逐渐消减过程中降低了系统总体降解BPA的效率,BPA及其有毒副产物的累积并形成毒性,表现为在第5 d左右污泥总毒性的回升; 在出现毒性抑制率较高值后系统继续运行,期间微生物菌群的不断变化来适应新工况条件,生长周期短的微生物增长加快,污泥总毒性下降; 如此反复几个循环直至2个污泥龄后,系统达到均衡稳定状态,适应该工况条件的微生物菌群占明显优势且生长状况良好,因此SBR系统污泥总毒性抑制率(约33%)低于原工况条件系统稳定时总毒性抑制率(43%).
2.3 对比不同工况条件系统稳定时期单周期内COD、 BPA含量及污泥有机毒性变化趋势
2.3.1 单个SBR周期内不同工况水相COD变化
对比不同HRT和SRT的工况条件,两SBR系统稳定阶段周期内水相COD随时间的变化情况,结果如图 4所示.
图 4 两工况条件稳定阶段单周期内水相COD值变化趋势
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有