自动缷料式卧螺式离心机是依靠固液两相的密度差,在离心力的作用下,加快固相颗粒的沉降速度来实现固液分离的。图2所示为卧螺离心机结构简图。
图2:自动缷料式卧螺式离心机
转鼓前方设计有一个锥段,根据物料性质的不同,按照设定的速度高速旋转,物料在转鼓内壁以设计速度旋转,沿着转鼓壳体形成一同心液层,称为液环层。
物料内所含的固体在离心力的作用下沉积到转鼓壁上,再通过螺旋的运转将干物料推出转鼓。转鼓的运转速度直接决定分离因数,而螺旋的速差则直接影响被输送到转鼓外的固体含水率。它对处理量、停留时间和固体排出都有直接影响。设备尺寸3200×1600×1100,重量大于4000kg,材料为316L。
二级电催化气浮器由进水室、电极总成、电解室、气浮室、沉降室、自动刮渣器、直流电源、储渣室、出水室、配电控制柜等组成,电极为钛基贵金属涂层电极,各室材料为316L。电催化气浮器主要性能如下:
1.多相催化氧化原理
当阳极采用钛电极、石墨电极和其它化学修饰电极时,阳极将没有Fe2+产生,而阴极区则由于发生反应会产生大量的H2O2,从而使H2O2的浓度逐渐增大,增大的趋势随着反应时间的延长逐渐平缓。这主要是因为H2O2会被氧化分解为O2,或者被阳极氧化生成中间体˙HO2。
阳极采用修饰电极体系的氧化性高于石墨电极,这主要是由电极材质本身的特性所造成的。修饰电极表面有缺陷位,可以强化电极附近H2O失去电子的反应,促进˙OH的生成。同时,修饰电极具有较高的析氧过电位,电解的电流效率较高。而石墨阳极使用过程中在其表面容易发生的析氧反应将造成电极的损耗,使外层碳原子生成CO和CO2,并且逐渐溶解,导致电极间距离增大,电流效率降低。
2.电絮凝原理
油和悬浮物在水中的存在形式主要有浮油(>100μm)、分散油(10~100μm)、乳化油(0.1~10μm)、溶解油(<0.1μm)、油—固结合体(<10μm)和悬浮固体,电化学凝聚法除油和悬浮物的主要机制是利用电场的诱导使粒子发生偶极化:
图3粒子经过电极时发生诱导偶极化示意图
粒子经电场偶极化后带上了正负电荷,这与传统粒子仅带一种电荷不同。在流动过程中,正负电荷互相吸引,两个粒子互相接近结合成新的粒子,该新粒子在电场中再重新被偶极化,成为一个更大的带正负电荷的粒子。
图4偶极化粒子通过电极时的聚合过程示意图
在粒子不断偶极化和聚合的同时,电极的正负极上会发生以下电解过程:
阳极反应:2H2O-4e-→O2↑+4H+
阴极反应:4H2O+4e-→2H2↑+4OH-
电极上产生的氢气泡和氧气泡的数量和大小取决于电极上的电流密度,根据法拉第电解定律,每通过1F(26.8A٠h)电量能产生0.0224Nm3的氢气和氧气。
当氢气泡和氧气泡上升过程中自下而上会形成一个速度梯度而产生搅拌作用,大大增加了偶极化的油粒子的碰撞聚合的机会,使油粒子达到0.1~1mm。这些油粒子在上升过程中因充满了大量的气体而成为海绵状,使其密度远小于水,故可以在极短的时间内迅速上浮而与水分离。在合适的电流密度和电极布设方式下,除油和悬浮物效果可达到95%以上。配合投加一定量的药剂,可使去除效果进一步提高,达到99%以上。
3.电气浮原理
电化学气浮是一种用电化学方法从液相中除去原油和固态微粒等杂质的单元操作。上浮原理是含油污水通过电解池时,产生三种反应,可原位产生氢气、氧气、氯气等:
阴极反应:2H++2e→H2↑
阳极反应:4OH--4e→2H2O+O2↑
2C1--2e→Cl2↑
通过电解水产生的氢、氧、氯气体,携带污水中的胶体微粒,共同上浮,从而达到分离、净化的目的。
电气浮法所产生的气泡粒子直径比较小,可吸付的粒子的极限直径就越小,处理后水的水质就越好,如氢泡为10~30μm,氧泡为20~60μm,比表面相对较大,因而与污水中杂质的相对接触面积较大,气泡粒子的吸附能力也较强。
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2022 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ? 2022 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有