北极星环保网讯:为保证燃煤电厂烟气脱硝系统的安全、稳定运行,需要制定科学合理的选择性催化还原(SCR)催化剂寿命预测方案。SCR催化剂失效是多个物理和化学因素共同作用的结果,难以用传统的物理模型或数学公式对其失活程度进行预测。本研究针对电厂大数据特性,对原始数据进行预处理,建立了曲线拟合、灰色预测、BP神经网络、灰色神经网络4种预测模型。实例对比分析发现:数据预处理可以提高预测精度;当数据满足等时距特性时,灰色神经网络优化后的直接输出模型预测精度较高;当数据不满足等时距特性时,使用BP神经网络模型预测效果更好。
选择性催化还原(SCR)法已成为国际上火电厂应用最广、最为成熟的NOx排放控制技术。催化剂是SCR脱硝工艺的核心,SCR脱硝催化剂(简称SCR催化剂)长期在高温、复杂的烟气环境中工作,会受到物理和化学因素的影响而逐渐失活。SCR催化剂服役时间即使用寿命决定着SCR脱硝系统的运行成本。因此,正确预估SCR催化剂的使用寿命并及时更换催化剂,对减小电厂运行成本和节约资源具有重要意义。
目前,国内外学者已对SCR催化剂失活的过程和原因进行了探索,并针对催化剂的失活原因建立了多种催化剂失活动力学模型。
Lei等人研究了SCR催化剂不同中毒过程中催化剂碱金属中毒的失活速率。姜烨等研究了不同形态钾和铅导致SCR脱硝催化剂失活的机理,并在渐进壳模型的基础上建立了钾和铅中毒失活动力学方程。吴俊升等采用流化磨损测试方法分析研究了不同粒径催化剂的磨损行为,建立了相应的失活动力学模型。
孙克勤等研究了煤燃烧过程中砷的迁移规律以及SCR催化剂砷中毒对SCR脱硝系统影响的失活动力学。
Upadhyay等人以表面反应动态模型为基础,引入时间因素对脱硝反应动态过程进行了实验研究。此外,也有学者从催化剂整体失活的角度出发,建立了不同的催化剂活性预测模型。对于早期的催化剂失活程度预测可以使用Gauss和Logistic回归模型,根据实验曲线拟合得到失活公式,但精度较差。
董长青等在SCR催化剂失活动力学模型的基础上,分别从物理和数学角度进行了修正。傅玉等按照数据是否满足等时距要求,分别建立了灰色预测模型和多种曲线拟合模型,对催化剂的相对活性进行预测。
SCR催化剂失活机理复杂,通过传统的物理模型或建立数学公式对其活性进行预测的难度较大且准确度不高。此外,在电厂实际运行过程中,很难通过随时停机来采集催化剂的活性数据和运行参数;且随着负荷的变化,流经催化剂的烟气参数也会时刻变化,SCR催化剂活性波动性较大。因此,本文以5个电厂的实际运行数据为例,将实际运行数据预处理后用于曲线拟合、灰色预测、BP神经网络、灰色神经网络4类模型的SCR催化剂寿命预测模拟,探索预测SCR催化剂寿命的最佳方法。
1数据预处理一
1.1催化剂活性计算
催化剂活性K可用于衡量其催化氨与氮氧化物反应的综合能力,主要由催化剂自身性能、烟气条件、操作情况及机组运行状态决定。准确了解并计算催化剂活性是预测催化剂寿命的基础。电厂实际运行条件下的催化剂活性K计算公式为
1.2运行数据预处理
本文以5个在役电厂的实际运行数据为基础,进行数据预处理。以电厂1为例,该电厂给出了2016年1月10日到2017年1月3日期间的运行数据,包括机组负荷、烟气量、SCR脱硝反应器入口和出口NOx质量浓度等。通过式(1)得到不同运行时间对应的SCR催化剂活性如图1所示。
图1电厂1催化剂活性变化示意
由图1可以发现,电厂的催化剂活性数据十分繁杂,难以观察其变化规律。如果直接使用这些数据进行模拟预测而不考虑数据的内在特征,会导致最终预测结果误差较大,因此需进行相应的数据预处理。
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2022 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ? 2022 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有