北极星

搜索历史清空

  • 水处理
您的位置:环保水处理市政污水技术正文

污水处理技术篇:高效节能曝气技术 微孔曝气全球应用进展

2016-07-27 09:19来源:环境工程微信作者:胡鹏 刘玲花等关键词:污水处理曝气技术微孔曝气收藏点赞

投稿

我要投稿

3.2安装水深

曝气器的安装水深是影响充氧性能的一个重要因素。Kossay对不同水深下的充氧效果进行了比较,结果表明,在水深为0.5m时,充氧能力为1.2~2.2g(O2)/h˙m3,当水深增加到4.6m时,充氧能力提高到了10.4g(O2)/h˙m3。Martin在水深为3.5m~12.0m的范围内研究水深对微孔曝气的氧传质效率影响,结果表明,随着水深的增加,氧转移效率增加,同时能耗也在增加。

张斌分别在水深为5m,6m,10m处进行清水充氧性能研究,结果表明,充氧能力、理论动力效率和氧利用率均随水深的增加而增大。这是因为曝气器的安装水深越深,气液接触时间越长,氧传质系数越大,充氧性能越好,氧的利用率也越高。

俞庭康的研究结果却不太相同,在4~8m水深条件下,橡胶膜曝气器的充氧能力和氧利用率随水深增加而增大,但KLa和理论动力效率是先减小后增大,并在6m处达到最小值。

3.3曝气器的表面积

Kossay将曝气密度(曝气器的表面积与池底表面积的比值)作为研究对象,分别在曝气密度为25%、50%、75%、100%时研究其与充氧能力的关系,结果表明,充氧能力与曝气密度呈某种线性关系,且随曝气密度的增加而增大,但增大效果并不明显。

Martin的研究表明,当曝气密度由15%~20%下降到5%~10%时,氧气的吸收会由20gO2/m3˙m下降到13gO2/m3˙m。S.Gillot的研究表明,KLa随着曝气器数量的增加而增大。Gregory比较了曝气器尺寸分别为254mm和210mm时的氧转移率,结果表明,在水深3m处,254mm曝气器的氧转移率要高3%;当水深增加到6.1m时,这种差别提高到12%。

增大曝气器的表面积可以提高充氧能力和氧利用率,主要原因有两个:一是表面积的增大可以增加气泡数量,实质是增大了气水接触面积;二是表面积的增加减少了气泡之间相互影响,同时减少了小气泡并聚成大气泡的数量。

3.4曝气孔径

曝气器的孔径对充氧性能的作用至关重要。与粗孔曝气器相比,微孔曝气器可以节约50%左右的能耗。这是因为小气泡比大气泡的停留时间更长,同时与水的接触面积更大。Krasnyi指出,混合液的吸收氧量与曝气器的孔径成反比。Alkhalidi进一步提出了KLa与气泡大小的关系模型,并通过实验得到验证。

Kenneth通过实验比较了孔径分别为40μm和140μm两个曝气器的充氧性能,结果显示两个曝气器的充氧性能并没有太大差异。Yannick研究结果则不同,他发现孔径减小10%会使KLa增加15%,相反,孔径增加10%会造成KLa减小11%。庄健与Yannick的研究结果一致,他对孔径从50μm~100μm的6个梯度进行实验,结果表明,随着孔径增大,KLa、充氧能力、氧利用率和理论动力效率均减小。尽管小孔径有利于氧的传质,但孔径越小,阻力损失越大,能耗也越大。除了能耗问题,在实际应用中也要综合考虑污水水质导致曝气孔堵塞的问题。

3.5污水水质

针对不同水质,曝气充氧效果也不尽相同。Khoshfetrat就COD负荷对充氧性能的影响进行了研究,结果表明,COD负荷由1kg/m3˙d增加到2kg/m3˙d时,溶解氧由4.9mg/L降到3.9mg/L,随着COD负荷继续增加到2.5kg/m3˙d,溶解氧继续下降到2.1mg/L。

表面活性剂和总溶解性固体(TDS)是影响曝气氧传质效率的重要因素,是目前研究的热点。Marupatch对比清水和混合液(包括NaCl、葡萄糖、表面活性剂)的KLa发现,混合液中的KLa比清水中的有明显降低。这是因为表面活性剂能够使气泡减小,同时会增加气泡之间的并聚,导致总体氧传质系数降低。

延伸阅读:

【干货】马头岗污水处理厂精确曝气系统实施方案及应用效果

原标题:高效节能的曝气技术:微孔曝气的全球应用进展
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

污水处理查看更多>曝气技术查看更多>微孔曝气查看更多>