登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
该多级生物膜反应器中微观厌氧区的存在并不影响好氧区NH +4 -N 及COD 的高效去除,去除效果较为稳定;但另一方面,微观厌氧区是一种局部厌氧状态,NH +4 -N 在好氧区被氧化后形成的部分NO -3 -N 因缺少厌氧环境而未进行充分的反硝化作用,导致出水TN 难以达到《石油化学工业污染物排放标准》( GB31571-2015)要求,为此,适当增加独立的厌氧区可进一步优化TN 去除效果。
与常规生物膜法相比,多级生物膜反应器通过载体表面的吸附作用去除SS,被吸附的SS 可随老化的生物膜一起脱落并沉降至污泥斗,最终通过排泥管排出反应器。反应器对SS 的去除效果优于生物接触氧化池,动力消耗低且无需反冲洗,在运行管理上优于曝气生物滤池。
2. 3 HRT 对处理效果的影响
在进水ρ ( NH +4 -N) = 275 ~ 320 mg ˙ L - 1 、ρ(COD) = 944 ~ 1 391 mg˙L - 1 的条件下,HRT 变化对处理效果的影响如图5 所示。
延长HRT 可在一定程度上提高NH +4 -N 去除效果,但HRT 过长又会影响到反应器的脱氮效率。在HRT 由35. 1 h 延长到44. 5 h 的过程中,NH +4 -N 去除效果逐步提高,NH +4 -N 去除率由最初的94. 7% 提高到99. 7% ;而在HRT 由44. 5 h 延长到55. 6 h 的过程中,NH +4 -N 的去除效果变化较小,出水ρ(NH +4 -N) < 1 mg˙L - 1 。
废水中含有苯酚等难降解有机物,延长HRT 可进一步提高难降解有机物的去除,最终达到深度去除COD 的目的。在HRT 由33. 3 h 延长到51. 3 h 的过程中,COD 去除效果逐步提高,COD 去除率由最初的93. 7% 提高到98. 1% ,出水ρ(COD) 由61. 7 mg˙L - 1 降低到19. 3 mg˙L - 1 。在HRT 由51. 3 h 延长到55. 6 h 的过程中,出水ρ(COD)由19. 3 mg˙L - 1 降低到18. 3 mg˙L - 1 ,由于进水COD 浓度下降,COD 去除率未出现明显变化。
在HRT≥39. 2 h 的情况下,多级生物膜反应器出水ρ (NH +4 -N) ≤6. 13 mg˙L - 1 、出水ρ (COD) ≤42. 5 mg˙L - 1 ,可达到《石油化学工业污染物排放标准》(GB 31571-2015) 水污染物排放限值要求。在47. 6 h≤HRT≤55. 6 h 范围内,NH +4 -N 及COD 去除效果基本不受HRT 变化的影响。而采用SBR、A/ O 等常规工艺处理同样水质的煤气化废水,HRT 一般要大于80 h 才能达到《石油化学工业污染物排放标准》(GB 31571-2015)的要求。多级生物膜反应器通过生物固定化技术的应用提高了有效生物量,通过载体的微观厌氧区进行反硝化从而避免了单独设置厌氧反应器或厌氧时段,所以采用多级生物膜反应器处理煤气化废水,可大幅缩短HRT,从而在减少反应器容积的同时减小工程建设规模。
2. 4 进水负荷对处理效果的影响
受煤气化生产线不稳定因素的影响,生物处理单元进水水质波动较大,这就要求反应器对进水负荷变化具备一定的缓冲能力,因而需要考察进水负荷对反应器处理效果的影响。在HRT = 55. 6 h,进水ρ(COD) = 983 ~ 1 347 mg˙L - 1 的条件下,进水NH +4 -N 负荷对NH +4 -N 去除效果的影响如图6 所示。
多级生物膜反应器对进水NH +4 -N 负荷变化具备一定的缓冲能力, 当进水NH +4 -N 负荷≤0. 158kg˙(m3 ˙d) - 1 ,反应器去除NH +4 -N 的稳定性较好,达到了深度脱氮的效果,出水ρ (NH +4 -N) = 0. 61 ~0. 97 mg˙ L - 1 , 去除率为99. 7% ~ 99. 8% 。进水NH +4 -N 负荷> 0. 158 kg ˙ ( m3 ˙ d) - 1 之后, 进水NH +4 -N 负荷的提高对NH +4 -N 去除的稳定性具有显著影响,出水ρ(NH +4 -N)随进水负荷的提高而增大,NH +4 -N 去除率下降。在进水NH +4 -N 负荷≤0. 203kg˙(m3 ˙d) - 1 的情况下,出水ρ ( NH +4 -N) ≤5. 15mg˙L - 1 ,可达到《石油化学工业污染物排放标准》(GB 31571-2015) 水污染物排放限值要求,当进水NH +4 -N 负荷= 0. 248 kg˙(m3 ˙d) - 1 ,出水ρ(NH +4 -N) = 18. 9 mg˙L - 1 ,NH +4 -N 去除率降至96. 7% 。
在HRT = 55. 6 h, 进水ρ ( NH +4 -N) = 273 ~313 mg˙L -1 的条件下,进水COD 负荷对COD 去除效果的影响如图7 所示。随着进水COD 负荷的提高,出水ρ ( COD) 逐渐增大, 在进水COD 负荷≤1. 357 kg˙(m3 ˙d) - 1 的情况下,出水ρ(COD)≤54. 2 mg˙L - 1 ,可达到《石油化学工业污染物排放标准》(GB 31571-2015)水污染物排放限值要求。COD 去除率在进水COD 负荷≥1. 198 kg˙(m3 ˙d) - 1 后呈持续下降趋势,当进水COD 负荷= 1. 703 kg˙(m3 ˙d) - 1 ,COD 去除率降至97. 3% 。具体参见污水宝商城资料或http://www.dowater.com更多相关技术文档。
3结论
1)采用4 级生物膜反应器串联处理煤气化废水,在16 d 的培养时间内快速完成了微生物的驯化及固定化,对NH +4 -N、COD 及TN 的去除率分别达到99. 8% 、97. 8% 和62. 7% 。
2)在HRT = 55. 6 h 的条件下连续运行21 d,反应器各单元均能实现对NH +4 -N、COD、TN 及SS 的同步去除,反应器出水NH +4 -N、COD、TN 及SS 的质量浓度分别为0. 23 ~ 1. 37、16. 3 ~ 26. 1、91. 6 ~ 139、12. 3 ~18. 5 mg˙L - 1 ,平均去除率分别为99. 8% 、98. 1% 、65. 8% 和88. 2% ,SND 率达到70. 1% 。
3)在HRT≥39. 2 h 的情况下,多级生物膜反应器出水ρ(NH +4 -N)≤6. 13 mg˙L - 1 、出水ρ(COD)≤42. 5 mg˙L - 1 ,可达到《石油化学工业污染物排放标准》(GB 31571-2015) 水污染物排放限值要求,在47. 6 h≤HRT≤55. 6 h 范围内,NH +4 -N 及COD 去除效果基本不受HRT 变化的影响。
4)多级生物膜反应器对进水负荷变化具备一定的缓冲能力,在进水NH +4 -N 负荷≤0. 203 kg˙(m3 ˙d) - 1 、进水COD 负荷≤1. 357 kg˙(m3 ˙d) - 1 的情况下,出水ρ(NH +4 -N)和ρ(COD)可达到《石油化学工业污染物排放标准》(GB 31571-2015)水污染物排放限值要求。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
废水近零排放分盐技术可产出硫酸钠、氯化钠进行资源化利用,减少外排固废量,创造环境友好煤化工项目。结合中安煤化污水场项目从废水水质特征、分盐工艺选择、污染因子、结垢因子、特征因子的控制、长周期稳定运行等方面探讨了废水近零排放分质结晶技术的工业化应用。01渗排型透水铺装径流控制1.1项目
文章介绍了现代煤化工产业的发展现状及其面临的环境挑战,并对现代煤化工废水组成及特性进行了分析。通过对有机废水和含盐废水进行分类收集、分质处理、分级回用,现代煤化工废水处理系统从重视单元技术发展为统筹考虑工艺衔接和源头治理的关键技术集成,形成了废水预处理-生化处理-再生水回用-含盐废水膜处理-蒸发结晶处理的基本技术框架。同时,针对现代煤化工项目废水处理系统实际运行中出现的问题进行分析,提出解决思路,优化技术集成,进一步破解现代煤化工废水近零排放的技术瓶颈,降低废水近零排放的经济成本并提高运行稳定性。
摘要:介绍了煤化工废水中油的5种存在状态和煤气化废水、焦化废水、兰炭生产废水等3种煤化工含油废水,探讨了静置沉降法、气浮法、过滤法、粗粒化法、化学破乳法、吸附法等在煤化工含油废水中应用的可行性,总结了在技术和经济上具有优势的除油技术。关键词:煤化工;废水;除油;探讨我国淡水资源贫乏
摘要:通过分析煤化工废水的来源及特点,汇总了我国主要煤化工项目废水“近零排放”的技术及工程应用现状,提出了现阶段煤化工废水“近零排放”存在的主要问题,并给出相应的对策建议。关键词:煤化工;废水;“近零排放”近年来,在国内煤炭库存积压、价格下跌而原油、天然气等石化产品需求扩大、价格
摘要:对煤化工废水水质特征、治理方法及现状进行了综述,指出煤化工废水治理存在的主要问题及发展方向,提出煤化工废水处理的主要流程为:针对性的物化预处理+生物处理+后续(或深度)处理,其中针对性的预处理至关重要。关键词:煤化工废水;难降解有机物;针对性预处理;生物处理;后续(或深度)处理我国富煤
摘要:煤化工产业耗水量大,废水排放量大,污染物浓度高,水资源短缺和环境污染问题限制了煤化工产业的发展。分析了不同的煤气化生产工艺产生的废水水质特征;推荐了不同的煤气化生产工艺产生的废水处理及回用处理工艺;介绍了煤化工废水“零排放”工程设计实例,并就“零排放”技术在工程运行中存在的
污水处理后的色度经常困扰着很多污水处理人员,因为工艺没有考虑色度的去除,所以色度高时很让人头疼!引起污水色度的因素主要有物质的光折射和水中存在带色物质两种。光的折射除了视角上的污染外,并不会造成水质污染。而水中存在带色物质就不同了,其污染程度由水中污染物所决定。1、污水出水色度超
采用溶胶-凝胶法制备LaCoO3钙钛矿型催化剂用于紫外-催化湿式过氧化氢氧化煤化工废水膜浓缩液,表征了催化剂的结构,并考察了各因素对催化氧化效果的影响。结果表明,当H2O2投加量1.2mL/L,催化剂投加量0.8g/L,反应温度120℃,反应压强0.5MPa,pH=3,反应时间60min时,COD的去除率为89.7%,TOC的去除率
摘要:煤化工技术主要是以原煤为原料,应用物理、化学等各类工艺方法将煤炭转换为气态液态与固态,并进行深度的加工。开发煤化工技术有助于提升煤炭利用效率,进一步推动煤炭能源高效利用。文章基于此背景下简要分析煤化工废水处理技术进展及发展方向,并提出具体的发展策略,希冀有效促进煤炭能源高效
摘要:根据目前国内外应用较多的Lurgi碎煤加压气化技术、Shell干粉煤气化技术和Texaco水煤浆气化煤气化技术,总结了上述3种煤气化废水的水质,综述了煤气化废水的预处理技术、生化处理技术、深度处理技术及回用(或近零排放)技术,列举了上述技术在实际中的应用,指出了煤气化废水处理技术和回用技术
摘要:随着工业化进程加快,高浓度有机废水大量排放带来了巨大环境压力。详细介绍了传统的生物法和物理化学法的应用,重点论述了膜分离法在高浓度有机废水处理中的应用进展,突出了该技术工艺优势。进一步探讨了污泥处理和回收利用的现状以及该类废水资源、能源化技术的进展。最后,总结了各工艺的优缺
近日,由中建二局承建的扬州市保护生态环境的重要工程八里镇工业污水处理厂工程EPC总承包项目通过竣工验收,进入试运行阶段。项目位于江苏省扬州市,主要用于处理扬州市经济技术开发区内光伏企业所产生的工业污水。投运后,预计日处理工业污水5万立方米,出水水质可达到准一级A标准。工艺创新破解降解
8月7日,浙江金华市第二污水处理厂项目招标,总投资约60053.21万元,招标范围:施工图纸范围内的所有工程,招标人金华市水处理有限公司。建设规模1、本工程建设规模为新建1座日处理能力5万吨/日(土建按10万吨/日实施)的污水处理厂,采用半地埋建设形式,主要建设内容为污水处理、污泥处理、臭气收集处
摘要:本文概述了德国埃尔朗根(Erlangen)最先进的现代化污水处理厂的发展历程及其显著特点。这座污水处理厂集成了最前沿的污水处理技术,展现了卓越的污染物减排能力。在处理过程中,特别关注了微污染物的去除,以进一步提高水质的净化水平。自2020年以来,埃尔朗根污水处理厂实现了能源自给自足的重
【社区案例】我这边是颜料废水,SV30控制在60,经验是说泥量增长缓慢所以前期基本没排泥,现在SV30涨到80-90了,现在开始排泥了,但也是少量的。现在是氨氮有些上涨了,会是排泥造成的吗?(溶解氧控制在4左右)其他指标还可以COD和TN。(来源:污托邦社区)要保证硝化的正常进行,需要保证一定的硝化
近日,受强冷空气影响,我国自北向南经历了一轮大范围寒潮降温过程,此次降温造成一场席卷全国的降雪,对人们的出行及生活产生了影响,在清雪处置中撒融雪剂是最常用的手段,融雪剂的主要成分通常包括氯化钠、氯化钙、硝酸钠、硝酸钙等,统称为无机盐,这些成分进入污水处理厂,会导致进水含盐量增加,
根据建设项目环境影响评价审批程序的有关规定,经审查,我局拟对该建设项目环境影响评价文件进行审查。为保证此次审查工作的严肃性和公正性,现将拟审查的环境影响评价文件基本情况予以公示,公示期为自本通知公示之日起5日(2024年2月5日-2024年2月9日)听证权利告知:依据《中华人民共和国行政许可法
近日,中项网发布了2月第一周最新生活污水项目汇总,包括浙江公司农村生活污水治理设施提升改造项目、河南公司污水处理厂及其配套管网项目等。01浙江公司农村生活污水治理设施提升改造项目预算投资总额:1123万元进展阶段:施工准备项目所在地:浙江省衢州市项目详情:浙江省衢州市开化县大溪边乡墩南
近日,生态环境部、农业农村部联合发布《关于进一步推进农村生活污水治理的指导意见》(环办土壤【2023】24号)。《意见》明确,农村生活污水处理技术或技术组合的选择,要统筹考虑污水水质水量及其变化特点,以及区域水环境改善需求。其中,不临近重要水体且污染物浓度较低的生活污水,可结合环境景观
在活性污泥法的应用过程中,其处理效果会受到污泥回流比、曝气时间、污泥负荷、污泥沉降比、MLSS等因素的影响。因此,需要基于污泥沉降比作为指标来监控处理情况。SV(污泥沉降比),即在1000mL(也有显示为100mL)的曝气池混合液中,经过静置、沉淀之后,污泥和混合液之间的体积比。污泥沉降比能够表
目前,国内外通用的污水处理技术主要是采用活性污泥法,此方法具有处理彻底、有机物降解率高、二次污染小、能耗低和运行管理方便等优点。但也存在微生物对环境的适应有要求,特别是水温受自然环境影响的问题较难解决。冬季运行具有水温低、污泥活性较弱等特点,增加了活性污泥的处理难度,不利于污水处
活性污泥法是利用悬浮生长的微生物絮体处理污水的一类处理方法。为什么叫活性污泥?活性污泥基本概念是1912年英国的克拉克(Clark)和盖奇(Gage)发现提出的。他们对污水长时间曝气会产生污泥,同时水质会得到明显的改善。继而阿尔敦(Arden)和洛开脱(Lockgtt)对这一现象进行了研究。曝气试验是在
近日,生态环境部、农业农村部联合发布《关于进一步推进农村生活污水治理的指导意见》(环办土壤【2023】24号)。《意见》明确,农村生活污水处理技术或技术组合的选择,要统筹考虑污水水质水量及其变化特点,以及区域水环境改善需求。其中,不临近重要水体且污染物浓度较低的生活污水,可结合环境景观
近日,《河北省建制镇生活污水处理设施建设技术导则(试行)》印发,导则旨在加快推进河北省建制镇生活污水处理设施建设工作,指导建制镇生活污水处理设施的规划、设计、施工和运行管理,提升全省建制镇生活污水处理设施能力和水平。本导则共分8章及附录,主要内容包括:总则、术语、基本要求、规划、
一、污泥的种类污泥是一种由有机残片、细菌体、无机颗粒和胶体等组成的非均质体。它很难通过沉降进行彻底的固液分离。污水处理产生的污泥是典型的有机污泥,其特性是有机物含量高(60%~80%),颗粒细(0.02~0.2mm),密度小(1002~1006Kg/m),呈胶体结构,是一种亲水性污泥,容易管道输送,但脱水性能差。随
全量化处理垃圾渗滤液通常需要采用多个工艺和步骤,以实现综合处理、减量化和资源回收的目标。以下是一般的全量化处理垃圾渗滤液的主要步骤和工艺:1.固液分离:使用物理方法将垃圾渗滤液中的固体和液体分离。常见的固液分离方法包括沉淀、过滤、压滤或离心等。通过这一步骤可以获得固体污泥和澄清液。
在广东省环境保护厅《南粤水更清行动计划(2017-2020年)》的背景下,南方某城镇污水处理厂亟需扩建及提标改造。该污水厂现状预留用地有限,因此,需考虑节省占地的污水处理工艺,如多段AO、曝气生物滤池、移动床生物膜反应器(MBBR)及膜生物反应器(MBR)工艺。本工程经过技术经济比选,采用MBBR及MBR组合工艺,
1成功入选近日,2022年《国家先进污染防治技术目录(水污染防治领域)》正式印发,泓济环保的复合式连续流序批生物膜法工艺(HBF工艺包)以其在高COD、高氨氮废水处理中的优异性能,成功入选示范技术。2HBF工艺包随着能源化工和精细化工行业的蓬勃发展,行业客户对于水资源的排放和回用要求越来越高,
泓济产品与工艺包结合助力园区污水处理厂工业园区污水处理工业园区经济开发区、园区等作为产业集合板块,往往容纳众多企业,聚集众多产业工人,每日产生的污水量相当可观。生态环境部也曾发布《关于进一步规范城镇(园区)污水处理环境管理的通知》,通知里强调,城镇(园区)污水处理厂既是水污染物减
摘要:针对我国污水处理用地少、标准高、难稳定等问题,移动床生物膜工艺(MBBR)展现了节地、高效、灵活、稳定的工艺优势,获得了良好的应用效果,国内应用规模已达2500×104m3/d。MBBR工艺按微生物存在主要方式,分为泥膜复合MBBR工艺和纯膜MBBR工艺,分别隶属活性污泥法和生物膜法;同时纯膜MBBR耦合
1、酸碱度(pH值)大量研究表明,氨氧化菌和亚硝酸盐氧化菌的适宜的pH分别为7.0~8.5和6.0~7.5,当pH值低于6.0或高于9.6时,硝化反应停止。硝化细菌经过一段时间驯化后,可在低pH值(5.5)的条件下进行,但pH值突然降低,则会使硝化反应速度骤降,待pH值升高恢复后,硝化反应也会随之恢复。反硝化细菌
随着农村污水治理工作的推进和污水资源化理念的推广,农村生活污水的分质收集与资源化成为重要的研究和应用方向。农村灰水的收集-处理-回用模式逐渐受到重视。农村灰水是指除厕所污水以外的农村生活污水,具体包括农户日常生活产生的洗浴污水、洗漱污水、洗涤污水及餐厨污水等。灰水水量占生活污水总量
根据住房与城乡建设部发布的《中国城镇排水与污水处理状况公报:2006-2015》和《2015年城乡建设统计公报》显示,从2005年到2014年,城镇污水处理能力从不到7000万立方米/日增加到1.7亿立方米/日,增幅高达143%;城镇污水处理厂数量从1000座增加到4436座。城镇生活污水厂正常运转是削减生活污水污染的最
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!