北极星

搜索历史清空

  • 水处理
您的位置:环保水处理市政污水技术正文

研究:模拟厌氧氨氧化处理城镇氨氮废水

2018-08-01 13:25来源:环境工程学报作者:陈国燕关键词:生物脱氮工艺氨氮废水城镇污水的脱氮处理收藏点赞

投稿

我要投稿

2.3 不同NO3−-N/NH4+-N比下耦合批式实验结果

不同NO3−-N/NH4+-N比的批式实验结果见图4。当NO3−-N/NH4+-N比在0.8~1.6的范围时,随着反应的进行,NH4+-N和NO3−-N浓度均呈下降趋势,表明反应器中厌氧氨氧化作用与反硝化作用同步进行,实现了两者的耦合。

进水NO3−-N/NH4+-N比不同,各反应物的去除率也不相同。图4(a)和图4(b)是NO3−-N/NH4+-N比分别为0.8和1.0的情况。当NO3−-N被完全消耗后,尚有部分剩余NH4+-N存在,且比值越高,剩余越少。这是由于进水硝酸盐量太少不能为厌氧氨氧化反应提供足够的NO2−-N,使得厌氧氨氧化反应由于缺乏电子供体而终止。当NO3−-N/NH4+-N比值为1.2时(图4(c)),反应过程中部分反硝化反应产生的NO2−-N刚好被厌氧氨氧化反应所利用,两者协同脱氮。当NO3−-N/NH4+-N比值继续增大为1.6时(图4(d)),硝酸盐经部分反硝化提供的NO2−-N已超过厌氧氨氧化反应所需数值,NH4+-N被完全消耗后,尚有部分剩余的硝酸盐,此后,厌氧氨氧化反应终止,剩余的NO3−-N被继续还原。由于水中无氨氮存在,阻碍了反硝化菌的合成,因此,相应的硝酸盐利用速率也随之下降,由6.83  mg˙(g˙h)−1降为1.89  mg˙(g˙h)−1。剩余NO3−-N一部分还原为NO2−-N,另一部分被完全反硝化还原为N2。虽然此时TN的去除率仍高达91.98%,但在该条件下长期运行,由于具有完全反硝化功能的异养菌增殖,将不利于耦合系统的稳定。

批式实验结果表明,NO3−-N/NH4+-N的最佳比值为1.2,此时NH4+-N、NO3−-N及TN的去除率分别为92.85%、99.68%和96.42%。

图4 不同进水NO3−-N/NH4+-N比下耦合反应中各氮素浓度变化

2.4 耦合系统的连续运行状况

耦合系统连续运行20个周期,  进出水三氮变化及结果见图5。在起始的2个周期进水NO3−-N/NH4+-N比较小,分别为0.96和0.99,以便反硝化菌和厌氧氨氧化菌逐渐适应培养环境;其后,进水NO3−-N/NH4+-N比值均控制在最佳范围(1.1~1.3)。在实验条件下,耦合系统在低浓度氨氮下获得了稳定的脱氮效果。在进水NH4+-N浓度20~30  mg˙L−1、NO3−-N浓度为25~35 mg˙L−1时,出水NH4+-N浓度从12 mg˙L−1逐渐降低到3  mg˙L−1以下,NO3−-N与NO2−-N浓度均在1.5  mg˙L−1以下,NH4+-N、NO3−-N和TN的平均去除率分别为86.5%、95.2%和94.88%。

图5 部分反硝化厌氧氨氧化耦合反应器运行期间脱氮性能

图5(c)为运行期间耦合系统中厌氧氨氧化反应与部分反硝化反应的活性变化情况。在耦合反应器运行过程中,厌氧氨氧化菌对氨氮的氧化速率基本恒定,维持在(4.62±0.44)  mg˙(g˙h)−1;而部分反硝化菌对硝酸盐的还原速率在呈逐渐增大的趋势,由(4.04±0.43) mg˙(g˙h)−1增加到(5.51±0.30)  mg˙(g˙h)−1,这是由于部分反硝化菌的增殖速率(Y=0.3)  [21]相对厌氧氨氧化菌(Y=0.066±0.01)[22]较快,单位体积中的部分反硝化菌含量增高所致。

从耦合系统典型周期内各氮素变化的趋势(图5(d))也可以看出,随着培养周期的增加,耦合系统中微生物降解氨氮的曲线斜率基本不变,而硝酸盐还原的曲线斜率逐渐增大,这与耦合系统中2种不同的微生物的脱氮途径(硝酸盐经亚硝酸盐由厌氧氨氧化菌转化为氮气和硝酸盐经亚硝酸盐由反硝化菌转化为氮气)有关,可以用参与耦合反应的ΔNO3−-N/ΔNH4+-N的比值来衡量。当NO3−-N通过部分反硝化全部还原为NO2−-N为氨氧化提供电子受体时,在不考虑细胞合成的条件下,ΔNO3−-N/ΔNH4+-N的比值与厌氧氨氧化的ΔNO2−-N/ΔNH4+-N的比值相同,即1.146;在考虑部分反硝化菌的合成时,由于部分反硝化菌的增殖会消耗部分氨氮,从而导致ΔNO3−-N/ΔNH4+-N的比值降低,由本实验第2周期的结果可见,ΔNO3−-N/ΔNH4+-N的比值约为0.99,与KALYUZHNY等[23]的研究结果(0.97)相近。随着培养时间的增加,参与耦合反应的ΔNO3−-N/ΔNH4+-N比值逐渐增大,并且稳定在1.15±0.21(第20周期),出水中并未检测到NO2−-N积累,说明超出的亚硝酸盐被继续还原为氮气,经计算,该部分NO3−-N占进水NO3−-N的15.7%。YESHI等[24]在研究主流厌氧氨氧化工艺处理低浓度市政废水时同样发现异养反硝化与厌氧氨氧化共存,且通过反硝化去除的氮占进水总氮的20%。虽然在低氨氮浓度下厌氧氨氧化耦合部分反硝化过程中不能避免硝酸盐/亚硝酸盐会被继续还原,但不同周期内耦合系统对氨氮的氧化速率基本维持不变,表明厌氧氨氧化菌活性并未受到完全反硝化反应的竞争而降低,而是表现为协同作用与反硝化菌共同脱氮。

3 结论

1)通过接种优势菌群为Thauera  (71.85%)的反硝化污泥与培养成熟的厌氧氨氧化污泥可实现部分反硝化与厌氧氨氧化耦合,在乙酸钠做碳源的条件下可实现同步去除NH4+-N和NO3−-N,为低浓度氨氮废水(城镇污水)的高效脱氮提供了基础。

2)在COD/NO3−-N比为2.5,进水NO3−-N/NH4+-N比在0.8~1.6的范围内均可实现部分反硝化与厌氧氨氧化协同脱氮,TN的去除率分别为73.20%、87.89%、96.42%、91.98%,最佳的NO3−-N/NH4+-N比为1.2。

3)耦合系统内厌氧氨氧化菌与异养反硝化菌存在协同与竞争关系,进水NO3−-N的84.3%通过厌氧氨氧化途径转化为氮气,剩余15.7%通过异养反硝化途径转化为氮气。

原标题:模拟厌氧氨氧化处理城镇氨氮污水
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

生物脱氮工艺查看更多>氨氮废水查看更多>城镇污水的脱氮处理查看更多>