登录注册
请使用微信扫一扫
关注公众号完成登录
1.6 速率及转化效率计算
部分反硝化过程的速率及亚硝氮积累率按式 (1)~(3)计算:
R H, NO3−-N =−dC NO3−-N dt X RH, NO3−-N=−dC NO3−-NdtX(1)
R S, NO 2 − −N =dC NO 2 − −N dt X RS, NO2−−N=dCNO 2 − −NdtX(2)
R J, NO 2 − −N =C t NO 2 − −N −C 0 NO 2 − −N C 0NO3−-N −C tNO3−-N ×100% RJ, NO 2 − −N=CtNO2−−N−C0 NO 2 − −NC0NO3−-N−CtNO3−-N×100%(3)
厌氧氨氧化过程的速率按式 (4)~(6)计算:
R O, NH 4 + −N =−dC NH 4 + −N dt X RO, NH 4 + −N=−dCNH 4 + −NdtX(4)
R H, NO 2 − −N =−dCNO 2 − −N dt X RH, NO 2 − −N=−dCNO 2 − −NdtX(5)
R S, NO 3 − −N =dC NO 3 − −N dt X RS, NO 3 − −N=dC NO 3 − −NdtX(6)
式中:R H, NO 3 − −N RH, NO 3 − −N 与R H, NO 2 − −N RH,NO 2 − −N 分别为 NO 3 − −N与NO 2 − −N 还原速率,mg˙(g˙h)−1;R O, NH 4 + −N RO, NH4+-N 为NH4+-N氧化速率,mg˙(g˙h)−1;R S, NO 2 − −N RS,NO 2 − −N 为NO 2 − −N 生成速率,mg˙(g˙h)−1;R J, NO 2 − −N RJNO 2 − −N 为NO 2 − −N 积累率,%;C NO 3 − −N与CNO2−-N分别为NO3−-N与NO 2 − −N 浓度,mg˙L−1;C0NOx−-N与CtNOx−-N分别为取样起始与取样t时刻NO 2 − −N 或NO3−-N浓度,mg˙L−1;X为污泥浓度,g˙L−1,以VSS计。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近年来含氮污/废水的排放日益增加,2018年全国城镇污水处理厂日均处理水量达1.67亿m3,其中,氨氮削减量达119万t。氮素的过量排放会导致水体富营养化,危害水生生物,破坏生态系统;此外,过量的氮素摄入也会对人体健康造成威胁。环境中氮的价态在-3价至+5价之间变化,其中-3、0、+1、+2、+3、+5价态的
随着我国社会经济的不断发展,工业废水与生活污水产生量逐年增加。由于氨氮是水体主要污染物之一,因此,对水体中氨氮的去除成为水处理领域研究的重点与热点。沸石是一种具有独特多孔结构的天然材料,其三维骨架中存在的大量孔隙和空穴决定了沸石具有较强的吸附性能和离子交换能力。因沸石价格低廉、易
生物脱氮对环境条件敏感,容易受温度变化影响。绝大多数微生物正常生长温度为20~35℃,低温会影响微生物细胞内酶的活性,在一定温度范围内,温度每降低10℃,微生物活性将降低1倍,从而降低了对污水的处理效果。工艺投入运行后,由于四季的交替和所处的地理位置影响,若不加以人工调控,温度很难保持适
生物脱氮是指在微生物的联合作用下,污水中的有机氮及氨氮经过代谢转化为氮气的过程。其具有经济、有效、易操作、无二次污染等特,被公认为具有发展前途的方法。
生物脱氮除磷是指用生物处理法去除污水中营养物质氮和磷的工艺。水体的富营养化问题是20世纪中期提出来的。含氮和磷的污水无限制地排放,以致受纳水体中藻类过度繁殖,水质变坏。原水受氮和磷的污染,水处理的困难加大,费用增加。一、生物脱氮除磷的发展1932年,祖师Wuhrmann提出内源呼吸反硝化脱氮理
关于除磷菌的故事,我们又该怎么演绎呢?在上一篇的文章中,我们生物脱氮工艺中的三种类型的菌比喻成了三种不同个性的人:“不忘初心,牢记使命”的实干家(氨化菌)、只吃蔬菜不吃肉的“素食”主义者(硝化菌)、一有机会就挑食的“小滑头”(反硝化菌),以期加强各位水友们对于生物脱氮原理的理解,
按照比较科学的说法,咱们先解释一下生物脱氮工艺。首先介绍下污水中总氮的组成:凯氏氮(有机氮+氨氮)+硝态氮(硝酸盐氮+亚硝酸盐氮),值得注意的是,未经过处理的污水,尤其是市政污水中的硝态氮含量是可以忽略不计的。顾名思义,生物脱氮就是利用微生物的代谢活动把水中的总氮物质转变为氮气逸出
本节主要讲解污水生物脱氮工艺,包括传统生物脱氮工艺和新型生物脱氮工艺,以及两者之间的联系和区别。01、传统生物脱氮工艺(1)三级生物脱氮工艺三级生物脱氮工艺最主要的特点是曝气、硝化、反硝化分别单独进行,并分别单设中间沉淀池,需要投碱、投碳。此工艺构筑物多,基建投资大,运行费用高,目
应网友要求,我整理了常见污水处理工艺的相关原理、处理效率、工艺对比特点等内容;尽管每一种工艺有各自的特点,但不同处理工艺、不同的构筑物由于停留时间、污泥浓度等不尽相同;所以处理效率要结合实际生产过程之中的污泥状态来最终确定。不足之处,请大家批评指正。一、A/O工艺1、基本原理A/O是Ano
按照传统的脱氮理论,硝化、反硝化反应不能同时进行,大多数的生物脱氮工艺都将缺氧区、好氧区分开,但是不少试验、水厂等都发现了同步硝化、反硝化的现象,尤其是在有氧条件下的反硝化现象确实存在于不同的生物处理系统中,如生物转盘、SBR、氧化沟、CAST、MBR、SMBR等工艺中均有所发现。通过对同步硝
厌氧氨氧化(ANAMMOX)工艺,最初由荷兰Delft工业大学于20世纪末开始研究,并于本世纪初成功开发应用的一种新型废水生物脱氮工艺。它以20世纪90年代发现的ANAMMOX反应为基础,该反应在厌氧条件下以氨为电子供体,亚硝酸盐为电子受体反应生成氮气,在理念和技术上大大突破了传统的生物脱氮工艺。ANAMMOX工
北京排水集团原创厌氧氨氧化(“红菌”)技术成功中标国家存储器基地高氨氮废水处理项目,实现集团原创技术应用转化重大市场突破。国家存储器基地高氨氮废水处理项目位于湖北武汉光谷,作为北京排水集团在半导体芯片废水处理行业的首个工程,在目前“红菌”外部市场转化项目中,规模最大、示范效应最强
我将个人最近调试处理的硝化反应崩溃项目和大家分享一下,不足之处还请各位前辈指正!2022年8月15日,客户打电话说生化出水氨氮最近一直上升最高已经350了,因为出水一直超标目前厂里已经停产了(工业胶生产),目前生化已经停止进水,开始闷曝了(闷曝5天氨氮没有任何变化)。客户当时还是很着急的,
在这里我和大家分享一下我在高氨氮污水处理这方面的一些经验和教训。选这个项目的原因是这个项目是我处理过的污水中氨氮处理难度最大的项目。并且这个项目历时8个月,期间我掉池子里腿骨折,瘸了半年,现在碎骨头还在腿里。自己选的路,含着泪也要走。没办法,打着石膏拄着拐杖硬是把这个水调了出来。
对应CNP比的数值,很多小伙伴都存在误区,其实工艺不同CNP比也不同,好氧除碳工艺要求CN比100:5:1,脱氮工艺要求CN比4~6,除磷工艺要求CP比15:1,厌氧除碳工艺要求CNP比300:5:1,可以看出CNP比100:5:1只是好氧除碳工艺的要求,那这个比例是怎么来的?
以某化工生产企业废水为例,介绍高效吹脱法+折点氯化处理高氨氮废水的工程实例。该工程设计规模为3000m3/d,即125m3/h,进水NH3-N质量浓度高达1200mg/L。实践表明,采用该工艺处理高氨氮废水效果很好,出水NH3-N质量浓度小于15mg/L,可达污水综合排放标准(GB8978-1996)一级排放标准。
工业废水具有广泛的来源和类型。随着工业生产技术的进步,工业废水中的成分也变得多样化。其中,高需氧污染物和有毒污染物使工业废水的特征反映出为三方面:高浓度,高氨氮,难以降解。
吹脱法多用于处理中高浓度、大流量氨氮废水,吹脱出的氨可以回收利用,但有容易结垢、低温时氨氮去除效率低、吹脱时间长、二次污染、出水氨氮浓度仍偏高等缺点,所以明确影响吹脱法的关键因素,提高氨氮去除率,对于氨氮处理成本控制、水污染得到控制、实现城市的可持续发展具有重要的意义。
近年来因氨氮废水排放导致的污染问题日益严重,大量的氨氮废水直接排入水体会造成水体富营养化,破坏生态平衡,引发系列环境问题,严重危害生态安全。氨氮废水的处理一直是环保行业关注的重点,主要处理方法有氨吹脱法、反渗透法、化学沉淀法、电化学氧化法、生物法等。然而近年来氨氮废水的处理逐渐由
厌氧氨氧化与短程硝化反硝化的区别,很多小伙伴容易搞混,本文从两个工艺本身的原理出发写一写两个工艺的异同点!一短程硝化反硝化生物脱氮包括硝化和反硝化两个反应过程,第一步是由亚硝化菌将NH4+-N氧化为NO2--N的亚硝化过程;第二步是由硝化菌将NO2--N氧化为氧化为NO3--N的过程;然后通过反硝化作用
做高氨氮废水十余年,经历了无数次氨氮TN超标的情况,中间酸甜苦辣各尝了一遍,不过很有借鉴意义,今天就聊聊在这过程中遇到的案例和解析!总氮的问题不复杂,读懂这篇文章大家以后遇到常见的总氮超标问题也能够得心应手了!一、氨氮超标导致的TN超标氨氮不达标,TN也很难达标,氨氮超标的情况有以下几
当下,污水氨氮含量超标问题被重视,相关处理技术如雨后春笋般纷纷涌现。生物脱氮法、物化除氮法、折点氯化法、化学沉淀法、离子交换法、吹脱法等,均各有优势。随着工农业生产的发展和人民生活水平的提高,含氮化合物的排放量急剧增加,已成为环境的主要污染源,并引起各界的关注。经济有效地控制氨氮
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!