登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
摘 要: 简介了化学法中电化学法和药剂法的优缺点及适用条件; 比较了电化学法中二维电极、三维电极及微生物电解的区别; 阐述了电化学法去除废水中氨氮的作用机制; 介绍了电化学法及药剂法处理氨氮废水的主要影响因素; 着重介绍了不同化学法对氨氮去除效果的最新研究进展; 最后,展望了电化学法和药剂法的未来研究方向。化学法处理氨氮废水还有待进一步的研究完善。
关键词: 氨氮废水; 电化学; 药剂氧化; 氨氮回收
近年来,随着工业化的发展,氨氮废水导致的污染问题日益严重,氨氮是破坏水体平衡,造成水体富营养化的重要因素之一; 其过量排放会给生态环境和人体造成巨大危害,它不仅会促进水体富营养化,而且还会产生恶臭,给供水造成障碍。水中氨氮主要来源于化肥、制革、养殖、石油化工、肉类加工等行业的废水与垃圾渗滤液排放,以及城市污水和农业灌溉排水。如何经济高效去除废水中氨氮已成为近年来研究热点。
目前国内外对氨氮废水的处理方法有物理法、化学法以及生物法。本文就化学法处理氨氮废水热点问题展开综述,并展望未来化学法处理氨氮废水的研究方向。
1 电化学氧化法
电化学氧化法具有操作简单、氧化能力强、二次废料少、占地面积小等优点。近年来引起了人们的高度重视,被广泛运用于处理难生物降解有机废水、垃圾渗滤液、制革废 水、印染废水等领域。氨氮的电化学氧化主要是通过电极的催化作用产生·OH、ClO - 和 HClO 等具有强氧化活性的物质与氨氮反应,将氨氮氧化为氮气、硝态氮、亚硝态氮或其它产物,在酸性条件下,氨氮主要被羟基自由基去除,碱性条件下,氨氮主要被直接氧化去除,产物主要为氮气。常规的电化学处理氨氮废水有二维电极电解法、三维电极电解法以及微生物电解法。
1.1 二维电极
常规电解法处理氨氮废水就是直接在电解质溶液中加上电流,电极通过得失电子从而使电解质溶液产生强氧化性物质,将氨氮进一步氧化去除,或者直接在负极附近将氨氮氧化。大量实验研究表明,电化学法处理氨氮废水主要依靠间接氧化所实现。王春荣通过实验研究发现在氯离子存在条件下,氨氮氧化以间接氧化为主,氨氮去除率可达到 87% ,其中直接氧化率为 8% ,间接氧化率为79% 。Chen 等的研究表明氨的直接阳极氧化效率小于 5% ,电化学氧化法去除氨主要是由于电解过程中次氯酸盐的间接氧化作用,而且电解除氨氮在中性至中碱性条件下更有效。钛基氧化物涂层电极作为一种常用的电极,因为具有较低的析氯电位,在氨氮处理技术方面得到了广泛的应用。
李璇比较了 3 种 DSA 电极对氨氮的去除效果,发现与 Ti /RuO2-IrO2 电极和 Ti /RuO2 电极相比, Ti /IrO2-Ta2O5 电极具有较弱的电解氯离子能力,电化学间接氧化效率较低,并且 IrO2 的含量对电极析氧电位的提高和电极的抗腐蚀能力的加强起着重要的作用。Shu 等以 Ti /SnO2-IrO2-RuO2 为阳极,采用脉冲电解法处理氨氮废水,发现对于氨氮初始浓度为 80 mg /L 的氨氮废水去除率可达 99. 9% 。邱 江[17]采用 Ti /RuO2-IrO2-TiO2 作为阳极,对初始浓度 120 mg /L 的氨氮废水,氨氮去除率可达 100% ,实验发现设置隔膜电解槽,可以避免所添加氯离子造成二次污染,制备柠檬酸乙二醇酷络合溶剂体系及涂层表面掺杂铜元素改性可以大大提高电极的电催化活性和稳定性。
除了钛基氧化物涂层电极外,铅氧化物电极在氨氮废水处理方面也有不错的效果。张弛制备出一种新型 PbO2 电极作为阳极处理氨氮废水,发现随着电流密度的增加,氨氮的电催化效率逐渐提高,初始氯离子浓度对氨氮去除的影响较大,初始氯离子浓度的增加可显著提高氨氮电催化效率,随着初始氯离子浓度的增加,能耗逐渐减小,而且新型PbO2 电极对废水中氨氮有很好的去除效果。
1.2 三维电极
和二维电极相比,三维电极具有电流效率高、时空产率大、传质效率高等优点,被广泛运用于处理各类高浓度废水。丁晶等比较了相同条件下二维电极和三维电极的处理效果,结果表明三维电极能够更高效地去除氨氮,电解 20 min 后,对高浓度氨氮去除率可高达 95% 。Ding 等研究了水厂实际运用中,三维电极及二维电极对氨氮的去除效果,结果表明,三维电极对氨氮的降解率是二维的 1. 4 倍。
李健等以石墨板为阴极,钛基氧化物涂层的金属钛板为阳极,采用粉煤灰负载氧化钛粒子为三维电极,构建了动态循环处理模拟氨氮废水的三维电极反应器,氨氮去除率可达 99. 83% 。李亮等以 RuO2 /Ti 为阳极,不锈钢为阴极,活性炭填充三维电极对深度去除污水中的氨氮进行了研究,发现氨氮去除速率随着电流密度和氯离子浓度增加而增加,单位氨氮去除能耗随着电流增加而增加,随着氯离子浓度增加而减少。
1.3 微生物电解
近年来随着微生物燃料电池的飞速发展,为电化学研究方向提供了新的思路,微生物电解法跟常规电化学法相比具有更节能、更清洁、易操作等优点,可以很好解决电化学法能耗大的缺点,具有很好的经济效应和环境效应。
王海曼构建了连续搅拌微生物电化学系统( CSMES) -复氧式生物阴极微生物电化学系统( ABMES) 串联系统,并研究了串联系统对养猪废水中氨氮的去除效果,对氨氮的去除率可达 88. 4% ,同时可获得 1. 298 kWh /m3 的净能量。郑贤虹构建了一种 MEC-SANI( 异养硫酸盐还原、自养反硝化、硝化一体化工艺) 耦合系统,实验发现氨氮去除率可达 96. 9% 。刘明[27]将生物阴极微生物燃料电池与间歇曝气相结合,处理含盐氨氮废水,氨氮的去除率可达 95. 76% ,外加电路断路有利于 MFC 中氨氮硝化反应的进行。
2 药剂法
化学试剂法具有操作简单、见效快、去除率高等优点,常用作废水预处理,但是也存在着价格昂贵、存在二次污染等缺点。将化学试剂法与其他处理工艺耦合处理氨氮废水将会是未来的主要研究方向。
2.1 氯氧化法
常规处理氨氮废水的氯氧化法一般包括折点加氯、次氯酸钠氧化、二氧化氯氧化以及次氯酸钙氧化法等。
折点加氯法。李婵君等采用计量式连续加药的方式,使用折点加氯法处理低浓度氨氮废水,结果表明,控制 pH 在 5. 5 ~ 6. 5,m( Cl2 ) ∶ m( NH +4 ) = 8. 0 ~ 8. 2 之间时对氨氮的去除效果最好。罗宇智等采用化学沉淀-折点加氯法处理氨氮废水,处理后稀土氨氮废水氨氮仅为 8. 35 mg /L,且在折点氯化后投入适量 Na2 SO3 可有效降低水中余氯。白雁冰针对折点加氯法除氨氮后水中的余氯去除做了相关研究,结果表明,折点加氯进水氨氮宜在60 mg /L 以下,使用活性炭吸附浓度在 333 mg /L 以下的余氯具有很好的效果,余氯去除率可达 100% 。
次氯酸钠法。Hao 等比较了次氯酸钠、次氯酸钙、二氧化氯在相同条件下对氨氮废水的处理效果,结果表明次氯酸钠的去除效果最好。岳楠等研究了次氯酸钠氧化氨氮初始浓度为 200 mg /L 的废水的处理效果,结果表明,在 n( Cl2 /NH3-N) 为 1. 7,pH 值 7 ~ 9 的条件下去除效果最好,同时表明可通过氧化还原电位( ORP) 变化为运行控制提供依据。胡小兵等采用次氯酸钠氧化法去除电镀废水中的氨氮,效果显著,最佳工况下出水氨氮仅为6. 12 mg /L。章启帆等以三氧化二镍作为催化剂,研究了次氯酸钠催化氧化对氨氮的去除效果,发现三氧化二镍的投加能加快反应终点的来临,但是不能减少次氯酸钠的投量,处理高浓度氨氮废水具有很好的处理效果。
2.2 臭氧催化氧化法
臭氧因其具有很强的氧化性、使用方便等优点,被广泛运用于污水处理研究,臭氧氧化去除废水中污染物质的机理有两种: 一是臭氧利用自身的强氧化性直接与污染物质反应,而是在水溶液中其他物质的作用下产生氧化性更强的羟基自由基与污染物质反应,间接氧化去除污染物。
2.2.1 金属/金属氧化物催化臭氧氧化
由于单独采用臭氧氧化法处理氨氮废水存在着反应时间较长、臭氧利用率较低、氧化能力不足等问题。在实际运用中,为提高臭氧的使用效率,常加入催化剂以提高羟基自由基的生成数量从而达到好的处理效果,镁氧化物及其改性后的物质是不错的催 化 材 料。Chen 等研究了不同制备条件下 MgO-Co3O4 复合金属氧化物催化臭氧氧化处理氨氮废水的效果,发现对氨氮的去除率可达 85. 2% ; 此外,在实验中发现 SO2 - 4 和 HCO-3 能抑制氨根离子的降解,而 CO2 - 3 和 Br - 则能促进氨根离子的降解,使用多次后 MgO-Co3O4 复合催化剂仍能在催化中发挥较好作用。熊昌狮分别比较了 MgO、Fe3O4、Co3O4、NiO、CuO 五种金属氧化物作为催化剂对臭氧氧化去除氨氮的影响,研究发现, MgO 具有最高的催化活性,对氨氮的去除率可达90. 2%,但对产物氮气的转化率仅为 7. 9%,而 Co3O4催化臭氧氧化氨氮虽然活性不高,但其对产物氮气的转化率可达 17. 2%。氧化镁煅烧改性对其催化活性有很大的影响,郭琳等发现 500 ℃ 下煅烧得到的MgO 的催化活性最高,氨氮去除率可达到 96%,相比较于其他煅烧温度,提高了近 1 倍。
2.2.2 非金属催化臭氧氧化
金属氧化物虽然有较高的催化活性,但是由于成本原因,难以被广泛应用,活性炭作为应用广泛的吸附材料,其多孔的结构特性,能够提供强大的活性位点,并且其来源广泛,价格低廉,具有广阔的应用前景。尚会建等采用活性炭催化臭氧氧化法处理低浓度氨氮废水,发现活性炭的投加可显著提高臭氧的利用率,高 pH 条件下有利于氨氮的去除,在初始氨氮质量浓度为35 mg /L、活性炭投加量为 10. 0 g /L、臭氧流量为30 mg /min、pH 为 11 的条件下,反应 90 min 后,氨氮去除率可高达 97. 6% 。
除催化材料外,共存离子对催化效果也有很大影响。Tanaka 等研究了共存离子对臭氧氧化降解废水中氨氮的影响。结果表明,溴离子的存在能明显促进臭氧对氨氮的降解,氯离子及碘离子的存在对氨氮降解没明显作用。Luo 等采用二段臭氧氧化法处理氨氮废水,在初始 pH 为 11 的条件下,经 过 第 1 阶段臭氧氧化氨氮的去除率可达59. 32% ,pH 降低至 6. 63,经过第 2 阶段臭氧氧化后,氨氮去除率可达 85% ,通过对氧化产物的检测结果表明,氨氮主要转化为硝态氮,少部分转化为亚硝态氮,不转化为氮气。
2.3 磷酸铵镁法
高浓度氨氮废水常常是常规的生化处理的难点,近年来研究表明,磷酸氨镁法是处理高浓度氨氮废水的一种有效方法,它不仅能够高效处理高浓度氨氮废水,还能回收废水中的氮磷资源,磷酸铵镁沉淀经过简单处理后就能够作为氮磷肥料用于农作物,具有很高的经济价值和社会价值。磷酸铵镁法去除氨氮的反应原理如下:
磷酸铵镁法处理效果主要取决于三个因素,分别是 Mg∶ N∶ P 摩尔比、废水 pH 值以及废水中的金属离子。Liu 等构建了一种回收废水中氮磷的装置,采用曝气 CO2 气提法调节 pH,考察了曝气速率及 Mg∶ P 比对氮磷回收的影响,结果表明,随着Mg∶ P 摩尔比和曝气速率的增加,氮磷回收比例明显增加,在 0. 8 ~ 1 摩尔比和 0. 73 L /L·min 的曝气速率条件下效果最好,总氮回收率可达 67% 。溶液中的 Ca2 + 对磷酸铵镁法的去除效果也会有一定的影响,往溶液中加入 Na2CO3 可以对废水中的钙离子完全去除。王浩等采用响应面分析法对磷酸铵镁沉淀反应中的参数进行优化,并投入 Na2CO3以消除钙离子对沉淀效率的影响,结果表明,投加Na2CO3 可以对废水中的钙离子完全去除,在 pH = 9. 03,n( Mg) ∶ n( N) = 1. 20,n( P) ∶ n( N) = 1. 10,反应时间 30 min,搅拌速率 1 000 r/min 的条件下,氨氮的去除率可达 95. 4% 。
磷酸铵镁法去除废水中的氨氮对镁源和磷源具有很大的依赖性,经济成本也在一定程度上制约了磷酸铵镁法的发展,如何开发出一种经济高效的镁、磷源成为了沉淀法的迫切需要。Huang 等[49]采用了一种低成本磷酸盐、镁源磷酸氨镁沉淀法去除垃圾渗滤液中氨氮的方法,采用了化工厂的废磷酸为磷源,将菱镁矿煅烧而得的 MgO( 镁含量 53% ) 作为镁源,处理高氨氮垃圾渗滤液,在 Mg∶ N∶ P 摩尔比为3∶ 1∶ 1的条件下,氨去除率可达 83% 。经济分析表明,与投加纯化学品相比,投加低成本 MgO 和废磷酸可节省 68% 的成本。
3 结论与展望
电化学法作为一种清洁、安全的方法,在处理中低浓度氨氮废液方面有着独到的优势,可以在相对较低的电流密度下取得很好的处理效果,但是依然存在着能耗较高的问题,微生物燃料电池的发展,为电解法处理废水提供了新的思路,但是针对产电菌培养的研究还是较少,单纯微生物电解效率不高,还得外加电源的支撑。常规电解法未来的研究方向可放在新型电极材料的研究以及如何提高电流效率上; 微生物电解法未来研究方向可着重于产电菌机理研究以及高效产电菌培养上。
药剂法是一种高效便捷的处理方法,也是现阶段处理高浓度氨氮废液效率最高的方法,但是成本较高以及容易造成二次污染等问题限制了药剂法处理氨氮废液的发展,为节约成本,常作为污水处理工艺的预处理方法。氯氧化法未来的研究重点可放在低成本液氯的应用及余氯处理上; 臭氧氧化法未来研究方向可放在高效催化材料的研制上; 磷酸氨镁沉淀法未来研究重心可放在低成本镁、磷源的实际应用以及沉淀物再利用上。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北京排水集团原创厌氧氨氧化(“红菌”)技术成功中标国家存储器基地高氨氮废水处理项目,实现集团原创技术应用转化重大市场突破。国家存储器基地高氨氮废水处理项目位于湖北武汉光谷,作为北京排水集团在半导体芯片废水处理行业的首个工程,在目前“红菌”外部市场转化项目中,规模最大、示范效应最强
我将个人最近调试处理的硝化反应崩溃项目和大家分享一下,不足之处还请各位前辈指正!2022年8月15日,客户打电话说生化出水氨氮最近一直上升最高已经350了,因为出水一直超标目前厂里已经停产了(工业胶生产),目前生化已经停止进水,开始闷曝了(闷曝5天氨氮没有任何变化)。客户当时还是很着急的,
在这里我和大家分享一下我在高氨氮污水处理这方面的一些经验和教训。选这个项目的原因是这个项目是我处理过的污水中氨氮处理难度最大的项目。并且这个项目历时8个月,期间我掉池子里腿骨折,瘸了半年,现在碎骨头还在腿里。自己选的路,含着泪也要走。没办法,打着石膏拄着拐杖硬是把这个水调了出来。
对应CNP比的数值,很多小伙伴都存在误区,其实工艺不同CNP比也不同,好氧除碳工艺要求CN比100:5:1,脱氮工艺要求CN比4~6,除磷工艺要求CP比15:1,厌氧除碳工艺要求CNP比300:5:1,可以看出CNP比100:5:1只是好氧除碳工艺的要求,那这个比例是怎么来的?
以某化工生产企业废水为例,介绍高效吹脱法+折点氯化处理高氨氮废水的工程实例。该工程设计规模为3000m3/d,即125m3/h,进水NH3-N质量浓度高达1200mg/L。实践表明,采用该工艺处理高氨氮废水效果很好,出水NH3-N质量浓度小于15mg/L,可达污水综合排放标准(GB8978-1996)一级排放标准。
工业废水具有广泛的来源和类型。随着工业生产技术的进步,工业废水中的成分也变得多样化。其中,高需氧污染物和有毒污染物使工业废水的特征反映出为三方面:高浓度,高氨氮,难以降解。
吹脱法多用于处理中高浓度、大流量氨氮废水,吹脱出的氨可以回收利用,但有容易结垢、低温时氨氮去除效率低、吹脱时间长、二次污染、出水氨氮浓度仍偏高等缺点,所以明确影响吹脱法的关键因素,提高氨氮去除率,对于氨氮处理成本控制、水污染得到控制、实现城市的可持续发展具有重要的意义。
近年来因氨氮废水排放导致的污染问题日益严重,大量的氨氮废水直接排入水体会造成水体富营养化,破坏生态平衡,引发系列环境问题,严重危害生态安全。氨氮废水的处理一直是环保行业关注的重点,主要处理方法有氨吹脱法、反渗透法、化学沉淀法、电化学氧化法、生物法等。然而近年来氨氮废水的处理逐渐由
厌氧氨氧化与短程硝化反硝化的区别,很多小伙伴容易搞混,本文从两个工艺本身的原理出发写一写两个工艺的异同点!一短程硝化反硝化生物脱氮包括硝化和反硝化两个反应过程,第一步是由亚硝化菌将NH4+-N氧化为NO2--N的亚硝化过程;第二步是由硝化菌将NO2--N氧化为氧化为NO3--N的过程;然后通过反硝化作用
做高氨氮废水十余年,经历了无数次氨氮TN超标的情况,中间酸甜苦辣各尝了一遍,不过很有借鉴意义,今天就聊聊在这过程中遇到的案例和解析!总氮的问题不复杂,读懂这篇文章大家以后遇到常见的总氮超标问题也能够得心应手了!一、氨氮超标导致的TN超标氨氮不达标,TN也很难达标,氨氮超标的情况有以下几
当下,污水氨氮含量超标问题被重视,相关处理技术如雨后春笋般纷纷涌现。生物脱氮法、物化除氮法、折点氯化法、化学沉淀法、离子交换法、吹脱法等,均各有优势。随着工农业生产的发展和人民生活水平的提高,含氮化合物的排放量急剧增加,已成为环境的主要污染源,并引起各界的关注。经济有效地控制氨氮
着工业的迅速发展,废水的种类和数量迅猛增加,对水体的污染也日趋广泛和严重,威胁人类的健康和安全。因此,对于保护环境来说,工业废水的处理比城市污水的处理更为重要。而在工业污水中,COD的降低是一个重要问题,那么工业污水COD降低不了该怎么办呢?一起来看看吧。工业污水特点:(1)排放量大,
本文利用电化学法处理循环冷却水,探究电解参数对处理效果的影响,并探究不同倒极条件对阴极结垢的剥离效果和剥离方式。结果表明,当水质硬度为800mg/L、Cl-质量浓度为567.2mg/L、电流密度为10mA/cm2、水力停留时间为10min时,硬度去除质量浓度为300mg/L,Cl-去除质量浓度为140mg/L,活性氯质量浓度为8
随着地球人口的增加,社会对农业用地的需求正日渐增高,而土壤污染正酝酿着一场严重的环境危机。一般情况下,土壤中的重金属以阳离子形式存在,通过静电作用或与配位作用形成化学键保留在土壤中。因此,最终的修复目标不仅是从土壤基质中分离出重金属离子,而且还得将其还原为零价金属态。然而,目前常
镀铜层常作为镀镍、镀锡、镀铬、镀银、镀金的底层,以提高基体金属与表面镀层的结合力和镀层的防腐蚀性能,因此,含铜电镀废水在电镀行业中十分普遍,而且该种工业废水通常含有多种重金属和络合剂。目前,对于含铜电镀废水的处理主要采用化学法、离子交换法、膜分离法、吸附法、生物法等。化学法处理含
近日,在北京举行的一个循环经济研讨会上,一台其貌不扬的智能机器引起了参会人员的极大兴趣,机器的全称是新型餐厨垃圾脱盐除盐回收净化处理器绰号吃干榨净机器人。这个看上去像一个汽车大小的长方形盒子,构造并不简单:一个不锈钢电解槽容器底部,带有一个螺旋桨刀片,容器上有孔。工作人员把果皮、
石墨烯,一种新型二维碳材料,起步于好奇心驱动的基础研究(2010年诺贝尔物理学奖),有望促进材料、能源和电子信息的协同发展。石墨烯,集合优异的柔韧性、导热、导电、光学、光电和化学稳定性于一身,具有潜在的广泛应用前景。但是单层本征石墨烯的制备并不容易,规模化的制备目前只能接近本征石墨烯的
印染废水具有水量大、有机污染物含量高、色度深、碱性大、水质变化大等特点,属难处理的工业废水之一。特别是近年来化学纤维织物的发展,仿真丝的兴起和印染后整理技术的进步,难生化降解的有机物大量进入印染废水,其CODCr也由原先的数百mg/L上升到2000~3000mg/L,使原有的生物处理系统CODCr去除率从
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!