北极星

搜索历史清空

  • 水处理
您的位置:环保水处理智慧水务评论正文

从源头到龙头 饮用水系统安全保障建设与实践

2020-07-21 10:14来源:给水排水作者:张怀宇关键词:饮用水安全饮用水系统供水系统收藏点赞

投稿

我要投稿

03 韧性设计

风险应对、应急供水与救援技术。供水系统应具备风险的应对能力。针对不同的风险,应具备灵活应对、使其危害最小化,并能快速恢复的能力,即韧性。韧性设计中,在典型的突发事件中,系统依次经历抗性(无损应对)、韧性(有损应对)、修复和恢复3个阶段,其基本原理是冗余设计,包括针对设施安全性的低负荷冗余、并联冗余、失效元件的快速隔离和修复等技术的组合。

突发公共事件是其中的典型的高危风险。突发公共事件主要包括自然灾害、事故灾难、公共卫生事件、社会安全事件4类。相关标准规定城市给水工程应具备应对4类突发事件的应急供水能力。

从技术层面,涉及饮用水的主要包括前3类:

典型的自然灾害,包括:地震、台风、雨雪冰冻、暴雨、地质灾害等,以及干旱。抗灾设防实行预防为主、平灾结合的方针。不同地区根据其风险特征制定相应的对策。日本地处地震多发区,进行了大量应对地震的研究和应对措施。我国针对汶川等地震也有大量总结,主要针对输配水管网;我国台北提出针对旱灾、暴雨、突发事件、地震,分别采取降低漏失率至10%以内和节水16%、净水能力提升50%、对11个区双系统供水、应急供水和采取抗震措施等。

事故灾难,公共设施和设备事故、环境污染和生态破坏事件、企业的各类安全事故等。其中环境污染近年多发,水专项进行了针对性研究,形成了应急处理成果。

公共卫生事件。主要包括传染病疫情、群体性不明原因疾病,以及其他严重影响公众健康和生命安全的事件。在全球性COVID-19疫情中,武汉提出了水源监测、水厂稳定运行、配水管网持续正压运行、储水设施高水位运行等措施。

突发公共事件的应对中,应把保障人民群众的生命安全和身体健康、最大程度地预防和减少安全生产事故灾难造成的人员伤亡作为首要任务。其措施按照流程顺序归纳如下。

3.1 风险识别与决策

解析城市供水系统,识别影响供水系统安全的高危要素,建立风险因子列表,并分析其影响程度和发生概率。风险因子数据来源于已发生知识库(用户反馈、企业自查、政府和行业监管、社会公开信息等)和专业研判(专家咨询等)。

根据风险因子的影响程度、发生概率,及两者叠加的量化方法,按照风险从高到低评估城市供水系统的应对能力。可采用模拟的方法,结合风险水平和功能缺失程度,定量化分析城市供水系统的脆弱点,并提出包括系统改扩建、应急供水等在内改进策略和方案。

3.2 水源

(1)水源水质监测。水源水质监测,特别是在线仪表的设置,可以为应急提供有效的支持,便于应急预案的及时启动。除传统的物理、化学指标外,生物毒性指标(斑马鱼或青鳉鱼、水溞、发光菌)也实现了在线仪表检测。

(2)备用与应急水源。当水源发生突发环境污染或自然条件改变致污染物超标时,应视情况及时采取不同措施:关闭受污染水源,并启动应急或备用水源;通过区域之间的协同、外调清水原水;或是采取不同水源勾兑,使勾兑后的水符合饮用水水源水质标准。

应急水源的规模(储水量)应至少满足一次应急供水的规定,即应急供水水量和时长的要求。应急供水水量随着城市的社会经济结构而有所区别。

应急水源可以是另建的水源,也可以是人工湿地、临时清水库。

(3)瓶装水。瓶装水可以就地存贮,或在应急事件中运送到受影响地区,两者可同时实施。

就地存贮的瓶装水,可以预存贮于家庭;也可存贮于超市、物流中心等地,和粮油应急储备同步实施。

由于瓶装水的配送可以快速实施,并且不受本地水源和处理系统的影响,因此往往是突发应急事件第一阶段首选的策略之一。然而,如果供水中断时间延长,则无法持续,因此,必须和城市供水系统修复等其他措施配合使用。

3.3 净水处理

根据水质特征和风险状况,采取不同的工程设计。

(1)流程冗余。适度延长或增加平行的工艺单元,并可调整,如增加预处理段、通过不同的预处理药剂应对不同的水源污染,活性炭滤池增加砂垫层和滤网,采用多种消毒剂和多点投加的组合消毒工艺、用以增强对不同致病微生物的灭杀或控制消毒副产物等。

(2)负荷冗余和工艺单元分组。根据处理规模,适度采取相对较低的设计负荷,或平行的冗余单元。如:滤池采用相对较低的滤速,药剂投加装置适当增大最大投药能力,气浮和沉淀可切换等。

(3)灵巧设计。工艺流程或工艺单元具有高度的可调能力以适应水质水量的变化。如:工艺流程线可以根据水质条件或设备状况调整或超越,絮凝反应可通过搅拌器转速调整G值和GT值,增加药剂的投加点位等。

3.4 输配水管网系统

(1)冗余设计和应急响应。规划设计采用平行管线、环状管网等措施,在应急事件中,根据灾后设施状况等,采取一定的阀门控制方法隔离受影响管段,或临时布线连通的阀门控制措施,减轻灾后影响。

(2)事故区域临时供水路径。因配水系统的损坏,局部地区无法配送,在未受污染的水供应充足的情况下,可以建立临时水道或通过运水车转输。

(3)低水质供水。理论上城市供水系统应供应合格水质,必要时可以降低处理量,在不影响水质安全的条件下,确保生命保障的基本水量。然而,供水系统从水力学角度,无法将减量的水量输送到管网末端;大多数城市的生活饮用水管网也同时直连消火栓,降低供水量也就相应降低供水压力,无法保障消防用水,事实上是不可接受的。

一种可能的方法是城市供水满足一定的底限要求如消毒的要求后用于消防等非饮用水。根据需要可把管网水作为水源,由净水车净化后配给(清水池、水箱或散装供水)。

较小的供水系统,应不直连消火栓。

(4)输配水系统修复。在经过低质供水,或发生黄水浑水等事故状态后,必须经过清洗、消毒后方可转向正常供水。对于枝状管网,该步骤易于实现;环状管网则应提供合理分隔的措施,确保不同分段的冲洗和排水。

3.5 应急储备与救援

(1)应急储备。日本逐年稳步提升应急储备水量,供水系统的储水设施有效容积从1975年的0.142亿m³增长到2015年的0.356亿m³、增长151%,按最高日供水能力计则分别相当于5.9 h和13.7 h、增长132%。台湾省台北市则按3 L/(cap·d)、持续供应28 d的标准建设储水设施。美国也将在线或离线的储水设施作为应急的重点,并建议了叉车、槽罐车等装载、运输、分发的设备、器材。

通过设置在水厂内的应急清水池或者管网内的高位水池中储备的清水为应急送水车提供清水。当发生严重供水危机时,供水系统中水源、水厂和管网设施均无法正常使用或供水干管水质变差的突发状况,及时关闭应急储水设施与常规供水管道的阀门,将清水保存在应急储水设施中,然后配置送水车向集中供水点输水,保证应急状态下居民生存用水,为城市正常供水设施的维修及恢复提供时间。

(2)区域救援。2019年底住建部“国家供水应急救援能力建设”项目移交,建成华北、华东、华中、华南、东北、西南、西北、新疆8个区域的国家供水应急救援中心,应急处理装备大部分地区可12 h内到达、偏远地区18~30 h内到达,必要时偏远地区采用空运方式12 h内到达。也可参考建立较小的区域级别的救援措施。区域救援满足供水系统修复前的应急供水需求。

04 饮用水安全保障系统观与研究办法

应对现在和未来发展挑战技术。可持续性是指满足当前需求同时不影响后代满足自身需求的能力。饮用水系统的可持续性设计应考虑社会可持续性、生态可持续性、经济可持续性和科技可持续性。

4.1 社会可持续性

“以水定城、以水定地、以水定人、以水定产”是保障国家水安全的重要发展思路,是作为自然元素的水资源永续利用支撑城市经济社会的可持续发展的基础。水资源开源(含再生水利用和雨水利用等)、节流(用户节水)、提升供水效率构成提升城市水资源利用效率的主要举措。其中前两者不在本课题的讨论范围内,不予赘述。

影响供水效率的因素包括水处理设施的自用水、输配水系统的漏失。

(1)净水厂自用水率控制。常规处理工艺的净水厂的自用水率一般为供水量的5%~10%。水处理设施的自用水主要包括:絮凝池和沉淀池(澄清池)排泥水、各类滤池冲洗排水、膜系统的浓水等。

混凝效果好、絮体密实,并采取适当的排水量控制如污泥浓度在线检测时,可以减少沉淀池的排泥水水量。

滤池采用气水冲洗可较单水冲洗大幅度降低耗水量,如采用气水冲洗的单层均粒石英砂滤池较采用单冲冲洗的单层细砂级配滤池,单次冲洗用水降低约40%,且冲洗周期延长。

饮用水中较常采用的中空纤维超滤膜,其水回收率一般应达到90%以上,浸没式膜较压力式膜易于达到更高的水回收率,建议设计取值分别为96%和94%。

(2)输配水系统漏损控制。净水厂产水量和水司向目标用户的售水量之间存在一定的产销差。产销差扣除向消防等公用设施的免费供水外的部分称为漏损。漏损包括物理漏损(也称漏失)和账面漏损(非法用水和计量误差)。研究主要针对物理漏损。

(3)2016年全国城市供水总量为421.84亿m³,管网漏损总量为61.50亿m³,管网漏失总量为28.47亿m³,平均漏损率大于22%,漏损的水量大体上与北京、上海、广州的计量用水量之和相等。县镇水司漏损率有过之而无不及。实现目标漏损率10%将大幅减少水资源的消耗和提升对旱灾的应对能力,可以为未来城市发展留出更多空间。

管网漏失控制常用计量分区和压力控制、检漏和修复、管道更新3种方法。

管道更新。建立管道数据库,包括管道的管材、规格、管径、接口、生产厂商、时间和批次、施工商、敷设位置、地质条件、历史爆管情况等,通过对爆管历史数据的分析,预测易爆管管段,及时更新。管道更新费用较高,但对漏失量和水质等指标得到显著改善。

检漏和修复。建立检漏队伍,制定适宜的奖惩措施,采用相关仪、听漏仪等设备,及时检出漏点并予以修复。检漏和修复是诸多水司行之有效的措施。目前检漏难以检出DN300以内管道的漏点。

计量分区和压力控制。已经形成包括水平衡与流量分区、管网建模—供水分界线—压力管理等多层级分区、漏失定位辅助检漏修复、智能压力调控、柔性管道降复压控制等的漏损控制集成技术。

以上技术经验证,不同城市或片区可实现4~27个百分点的提升,具有良好的效益。

4.2 生态可持续性

按全国城市及县镇供水企业年电耗约143亿kW·h,二次供水和居民端60亿kW·h计,供水电耗相当于全国总用电量的0.32%,或工业以外各类用电量之和的1.04%。供水企业电耗占直接运行费用的50%~80%,运行管理总费用的30%~50%。可见供水能耗绝对量高、占比大,是当地的能耗大户,供水行业的节能可以显著降低温室气体排放。

我国当前水处理工艺以常规工艺为主,供水企业城市单位电耗595.95 kW·h/1 000 m³,县镇单位电耗430.89 kW·h/1 000 m³,其中泵的电耗约占80%。随着处理要求的提高和工艺流程线的延长、从城市向农村的拓展完善,供水能耗还会逐渐提高。

典型高能耗段的典型电耗:臭氧8.5~36 kW·h/1 000 m³(氧气源)、15~50 kW·h/1 000 m³(空气源);中空纤维超滤膜 15~25 kW·h/1 000 m³(浸没式)、45~75 kW·h/1 000 m³(压力式);紫外消毒16~27 kW·h/1 000 m³;纳滤膜 200~480 kW·h/1 000 m³;二次供水 250~900 kW·h/1 000 m³。

在“十一五”“十二五”期间,通过输配水管网的优化调度,实现典型城市能耗降低7%~21%;臭氧发生器、中空纤维超滤膜在价格降低30%~50%以上的同时,实现能耗水平达到国际先进水平;二次供水通过供水泵等关键组建和工况优化设计,实现典型城市降低能耗50%~60%以上。

以上成果标准化后将推动供水行业的大幅进步。

4.3 经济可持续性

供水行业的资产和运营管理,经过了依托计算机和传感器实现从手动到初步信息化,依托PLC+组态软件模式实现SCADA,再依托物联网实现智慧水务的过程。随着信息化技术的进步,精细管理得以应用于供水行业,并创造巨大的价值。

智慧水务可在以下5个方面突破:

智慧生产。通过需水量预测、水源的水量水质预测,合理的技术方案,辅助在达成水质、水量、水压目标的基础上,优化调度水源、水厂和输配水系统的运行、节能降耗、控制漏损,实现运行成本,包括能耗、药耗、水资源费等的综合降低。

资产和外购服务管理。建立数据库并予以分析,离线或实时预判设备、设施状况,降低故障率和维修率,提升资产服务年限,实现资产的有效维护、资产和外购服务的有效采购。

资产和外购服务管理。建立数据库并予以分析,离线或实时预判设备、设施状况,降低故障率和维修率,提升资产服务年限,实现资产的有效维护、资产和外购服务的有效采购。

智慧服务。于供水企业而言提升水表的抄见率并降低了抄表人工成本;于用户而言,标准话服务降低了对话成本。

风险控制支持。实时检查数据的异动,为风险控制提供支持。

协助人才培养。通过模拟操作等功能加快培养专业人才。专业人才是供水行业有效运行的基础。

智慧水务应在自顶向下设计、系统性布局的基础上,合理利用信息与通信技术(ICT)等新技术工具,最终服务于生产运营和对外服务,以标准化、现代化的管理降低成本为目的。

4.4 科技可持续性

自从现代净水工艺确立以来,近百年间,在应对各类环境威胁和用户需求的基础上,饮用水技术得到长足的发展。这一趋势在可预见的将来仍然持续。

我们需要一个开放的技术体系乃至一个开放的标准体系,容纳、承接、鼓励新技术,以应对未来的挑战。过去的技术体系和标准体系,在人才匮乏的时代,帮助我们应对了高速建设发展的时期。我们的教育体系已经培养了大批人才,不论从宏观还是微观,都具备了更高的社会能力,技术体系和标准体系也要与之适应,必须更加开放,才可以适应当今的发展条件和发展需要。

技术需要标准化方可推动应用。饮用水领域的建设标准体系改革正在进行。未来国家强制层面上只做底限要求,包括目标层和必要的技术措施,行业标准、地方标准、团体标准将更多的发挥作用,体系上也会更为完备。

标准体系的完备需要新技术的标准化支撑。运用技术评估这一生产力工具,有助于在短时期内,快速将国家水专项、基金项目、地方和企业投入的科研项目中获取的技术规整化、标准化,从而填补标准体系的空白,推动技术的应用和行业技术进步。


原标题:从源头到龙头,饮用水系统安全保障建设与实践
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

饮用水安全查看更多>饮用水系统查看更多>供水系统查看更多>