登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
电化学修复作为一种既不破坏生态环境又能修复土壤污染的原位修复技术,对于低渗透性土壤也具有较好的修复效果,是近年来土壤污染修复的热点方向之一。其主要包括电动力(electrokinetic,简称EK)修复和微生物电化学(microbial electrochemical system,简称MES)修复,其中以EK为主的研究较多。本文综述了电化学技术在有机污染土壤修复中的最新进展,包括电动力修复技术(图1a)和微生物电化学技术(图1b)。
图1a电动力修复原理示意图
图1b微生物电化学修复原理示意图
首先,分析了电动力和微生物电化学修复过程中电极材料、污染物种类、操作参数和电极布置对污染物去除效率的影响。通过制备二元金属氧化电极或用纳米颗粒修饰碳毡,优化电极排列和电池结构,优化电极结构,可以大大提高污染物的去除效率。优化外加电压、电解液种类、操作时间、外阻、内阻、电极间距等操作条件,显著提高了电化学修复效果。其次,电动力和微生物电化学修复技术与表面活性剂、助溶剂、纳米颗粒和氧化剂等有助于原位去除或降解污染物的促进剂相结合,可以增强土壤中的有机物的修复效果。电动力修复经强化后对农药、石油烃和持久性有机污染物的去除率均可达到90%左右;微生物电化学技术经强化后可使石油烃去除率提高329%,农药去除率提高98%。它们还可以与化学氧化、生物修复等技术进行耦合,从而达到协同去除有机污染物的结果,也为电化学的大规模应用提供了可能。最后,讨论了土壤修复过程中微生物群落的变化与污染物去除的关系。
对于此技术,目前还存在一些问题:
(1)土壤的导电能力较差,有效半径是需要考虑的一个重要参数。在实际污染修复中,除了可通过优化电极排列或电池构型来扩大电极作用的有效半径,也可向土壤中加生物炭、碳纤维、氧化石墨烯和沙子等增加土壤导电性和物质传输能力,进而扩大作用半径。
(2)为了维持土壤修复的长期运行,需要考虑电极的钝化和腐蚀问题。对于电动力修复而言,虽然金属及其氧化物电极可显著提高电动力的修复效果,但大大增加了成本,而且极易钝化和腐蚀。对于微生物电化学,目前常用的电极材料是碳材料,其他材料的探索尚鲜有报道。
(3)添加表面活性剂能增加土壤中水溶性差有机污染物的去除效果。其中生物表面活性剂由于可再生且对土壤没有污染,具有很大的应用前景。
(4)电化学修复技术大量实验室规模的探索证明了其对土壤中有机污染物修复的显著作用,但增大规模对修复效果的影响尚需更多的探索。
(5)电动力修复的机理是在电动力辅助下土壤中的污染物迁移积累后通过化学氧化或生物修复去除,但施加电场后对于化学氧化和生物修复的影响尚不清楚,需要进一步研究。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
摘要:由垃圾填埋场渗透产生的渗滤液经常造成地下水的污染。在低氧条件下,受污染地下水中的氨氮通常难以衰减。由于受渗滤液污染的地下水中经常发现氯离子浓度处于较高水平,所以该文就一种由惰性电极组成的活性氯介导电化学修复受氨污染的地下水进行分析,以期加强电动力学修复技术在地下水修复过程的
随着地球人口的增加,社会对农业用地的需求正日渐增高,而土壤污染正酝酿着一场严重的环境危机。一般情况下,土壤中的重金属以阳离子形式存在,通过静电作用或与配位作用形成化学键保留在土壤中。因此,最终的修复目标不仅是从土壤基质中分离出重金属离子,而且还得将其还原为零价金属态。然而,目前常
水资源质量的优劣与我们的生活质量息息相关,如果地下水源地受到污染,我们应该怎么办?美国工程院院士,加州大学伯克利分校安全用水与卫生专业杰出教授、伯克利实验室能源技术领域负责人阿肖克·加吉尔(AshokGadgil)教授为我们解惑。地下水污染已成为全球性环境问题地下水污染是危及人类健康的大问
导读:文章综述了生物电化学在生态修复方面的应用及研究进展,介绍了其在盐碱地的修复、环境中抗生素及石油污染物降解、清洁能源产生等方面的应用情况,展望了生物电化学在未来生物传感器等方面的发展前景。背景生态修复是指采取生态工程或生物技术手段使受损生态系统恢复到原来或与原来相近的结构和功
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!