登录注册
请使用微信扫一扫
关注公众号完成登录
注:尺寸单位为mm.
图1 表面通风和土壤挖掘修复VOCs污染土壤的试验装置
Fig.1 The experimental apparatus of VOCs contaminated soil remediation by surface aeration and excavation
表1 污染源区及未污染土壤的基本理化性质参数
Table 1 The chemical and physical properties of soil in contaminated and uncontaminated areas
注:尺寸单位为mm.
图2 土壤热脱附和气相抽提联合修复VOCs污染土壤的试验装置
Fig.2 The experimental apparatus of VOCs contaminated soil remediation by thermal desorption and soil vapor extraction
1.2 土壤热脱附和气相抽提联合修复试验装置与操作流程
土壤热脱附和气相抽提联合修复试验装置如图2 所示. 在该试验中,四氯化碳污染土壤填充位置的土壤埋深为0.13~0.15 m,其填充尺寸为0.10 m×0.20 m×0.02 m. 污染土壤中四氯化碳的浓度和污染土壤总质量与表面通风修复试验相同. 在实际工程中,有多种方法可以实现土壤温度的升高,常见的升温方法包括热蒸汽注射、电磁波加热、热传导加热、电阻加热、射频加热等. 该试验中,采用加热线也即电阻加热的方式对受污染土壤进行加热,其中加热线的埋深为0~0.09 m. 加热过程中采用温度传感器控制加热线附近的土壤温度,温度控制范围为40~59 ℃. 当土壤温度低于40 ℃时,加热器启动,开始对土壤进行加热;当土壤温度高于50 ℃时,加热器关闭,土壤温度继续升至59 ℃以后开始缓慢下降. 抽提管为内径0.01 m且侧面开口的圆柱形塑料管,其中抽提滤管的土壤埋深为0.11~0.13 m,该位置与四氯化碳污染土壤的位置相近. 另一方面,采用微型隔膜泵以1.8 L/min的流量对土壤气进行抽提,并用手动采样的方式连续测定出气口中气相四氯化碳的浓度,据此计算抽提的四氯化碳通量. 在该试验装置中,各气体通风管路的进出口均连接装有干燥活性炭的洗气瓶,通过吸附作用防止四氯化碳扩散进入大气中. 试验过程中,以填充完沙箱并启动通风泵作为零时刻,土壤热脱附和气相抽提联用修复共启动2次,时间分别为2.50~6.67 h和25.77~30.17 h. 在该过程中,土壤表面的通风流量为9.27 mL/min,且室内温度始终为25.1 ℃.
1.3 气相四氯化碳浓度的测定方法
土壤内部及上方的气相四氯化碳浓度采用手动进样法进行测定. 沙箱侧壁共设置6个气体取样口,每个取样口均采用带有聚四氟乙烯垫片的盖子进行密封,其中的聚四氟乙烯垫片具有极好的弹性,可以保证采样100次而不漏气. 在采样过程中,采用5190-1506型气相进样针(Agilent,美国)插入取样口中,抽取50 μL土壤气,然后迅速将抽取的气体注入气相色谱的进气口中. 试验采用7890B型气相色谱(Agilent,美国)测定卤代VOCs的浓度,对四氯化碳的检测限为0.03 μg/L,其装有电子捕获检测器和20 m×0.18 mm×1μm的色谱柱(美国安捷伦).
在检测过程中,炉温的升温程序如下:首先在40 ℃保持0.75 min,然后以20 ℃/min的速率上升6 min,至最终温度为160 ℃后结束升温,开始进入冷却程序. 在检测过程中,进样口和检测器的温度分别保持在220和260 ℃. 采用氦气作为载气,载气流量为1 mL/min,在分流管中的分流比控制为1∶10,并采用氮气作为冷却气体. 通过室内试验发现,四氯化碳的出峰时间约在3.34 min.
2 结果与讨论
2.1 表面通风修复过程中的相间非平衡态迁移现象
在表面通风修复VOCs污染土壤的过程中,当改变土壤上方的通风流量时,土壤上方空气及沙箱中不同埋深土壤气中四氯化碳浓度随着时间的变化规律如图3所示. 当四氯化碳污染土壤填入沙箱后不久,在污染源处(埋深0.15 m)的气相四氯化碳浓度呈现快速下降的趋势,而其余位置及土壤上方的气相四氯化碳浓度则呈现缓慢上升的趋势. 在0.8~3.4 h内,土壤上方的气相四氯化碳浓度从0.064 mg/L逐渐升至0.402 mg/L,而土壤埋深为0.15 m处的气相四氯化碳浓度则从3.42 mg/L大幅降至1.33 mg/L,表明污染源土壤中的四氯化碳逐渐扩散到了沙箱中的其他区域,整个沙箱中的气相四氯化碳浓度趋于一致.
图3 表面通风修复中土壤内部及上方气相四氯化碳浓度的变化规律
Fig.3 The variation of gaseous CCl4concentration in andabove soil during the process of surface aeration
在3.83 h时,将土壤上方的通风流量增至18.76 mL/min,此时土壤上方的气相四氯化碳浓度呈现一个小幅上升而后下降的趋势,最大反弹幅度为0.29倍,而埋深0.05 m处及土壤上方的气相四氯化碳浓度则呈现逐渐下降的趋势. 该研究结果表明,在增加通风流量的最初阶段会导致四氯化碳的释放通量出现短暂反弹的现象. 在7.13 h时,将土壤上方的通风流量进一步增至 1 800 mL/min,该通风流量为上一个通风流量的95.9倍,可以代表实际场地机械通风修复中的通风流量. 在大幅增加通风流量后的1 h内,土壤上方及土壤内不同埋深的气相四氯化碳浓度均有所上升. 其中,埋深为0.15、0.05 m及土壤上方气相四氯化碳浓度的最大反弹幅度可达10.6%、16.2%和69.0%. 试验结果表明,大幅增加土壤表面的通风流量对土壤上方气相四氯化碳浓度的增幅最大,即可以导致二次污染物的释放现象,这是典型的VOCs在土壤包气带相间非平衡态迁移的体现. 这是因为较大的通风流量导致土壤上方的气相四氯化碳浓度显著下降,从而导致从污染源到土壤上方的气相四氯化碳浓度梯度显著增加,最终增加了土壤中的四氯化碳扩散到大气中的通量. 另外,较大的通风流量加剧了土壤内部气体的对流过程,导致不同位置土壤中的气相四氯化碳浓度趋于接近. 然而,随着通风过程的持续进行,土壤上方的四氯化碳被逐渐排出,最终导致土壤内部和上方的气相四氯化碳浓度大幅下降. 在实际修复过程中,土壤表面通风往往与土壤搅拌相结合,用于VOCs污染土壤的异位修复过程中. 然而,有研究表明,在较低的温度、较高的含水率和较为密实的土壤(如黏土)中采用机械搅拌通风进行修复容易产生拖尾现象,即修复不够彻底,仍有部分VOCs残存在土壤中,这也是相间非平衡态迁移的表现形式. 为了减弱土壤机械搅拌通风过程中的二次污染物释放现象及拖尾现象,进一步提高修复效率,可以在土壤中添加一定量的生石灰,能有效减少通过机械搅拌通风修复后的残余VOCs浓度,提高修复效率.
2.2 土壤挖掘过程中的相间非平衡态迁移现象
在进行土壤异位修复的过程中,一个必要的环节就是对污染土壤进行挖掘,但挖掘过程中VOCs的二次释放现象往往被忽视. 人们往往将修复施工的安全问题等同于建筑施工的安全问题,完全忽略了环境修复施工过程中可能产生的潜在环境风险,在修复现场缺乏相关的工作区域空气质量监测与管理人员,这不符合绿色可持续修复的理念. 因此,该文针对土壤挖掘过程中VOCs二次释放的现象进行了定量化的研究. 在进行表层土壤挖掘试验时,得到的土壤内部和上方的气相四氯化碳浓度随时间的变化情况如图4(a)所示,其中表层土壤挖掘的时间段为2.58~2.91 h. 在表层土壤挖掘之前,由于污染源的四氯化碳逐渐释放,因此在土壤内部及土壤上方的气相四氯化碳浓度均呈逐渐下降的趋势. 然而,在表层土壤挖掘后,由于挖掘深度约为0.05 m,初始土壤埋深为0.05 m的位置直接与土壤上方的空气相连通,从而加速了浅层土壤中四氯化碳的释放,导致初始土壤埋深为0.05 m处的气相四氯化碳浓度呈现大幅下降的趋势,在挖掘结束0.42 h的降幅高达65.7%. 由于表层土壤挖掘加速了污染物从土壤包气带向土壤上方释放的速率,从而导致在挖掘后的短时间内,土壤上方的气相四氯化碳浓度停止了下降,甚至还有所上升. 在土壤挖掘过程结束1.14 h后,土壤上方空气中四氯化碳的浓度从22.7 μg/L小幅反弹至24.1 μg/L,反弹幅度为6.2%,也即出现了挖掘过程中的二次污染物释放的现象. 另一方面,浅层土壤挖掘也会导致较为深层土壤(污染源)中的土壤气浓度在挖掘过程结束后出现小幅反弹,在土壤挖掘结束0.62 h时反弹幅度达到了24.4%. 因此,可以认为浅层土壤的挖掘同样有利于污染源中污染物从土壤中的加速释放. 然而,在小幅反弹过程结束以后,土壤上方空气及土壤内部的气相四氯化碳浓度继续呈逐渐下降的趋势.
图4 表层土壤挖掘和污染源移除过程中土壤内部和上方气相四氯化碳浓度的变化规律
Fig.4 The variation of gaseous CCl4concentration in and above soil during shallow soil excavation and pollutant source removal
在污染源土壤挖掘的试验中,土壤内部及上方气相四氯化碳浓度随时间的变化规律如图4(b)所示,其中污染源挖掘的时间段为22.8~23.1 h. 从图4(b)可知,在进行污染源处土壤挖掘后,初始土壤埋深为0.15 m处(污染源)的气相四氯化碳的浓度呈大幅下降的趋势,在挖掘结束0.6 h时的降幅高达64.9%,表明污染源土壤挖掘能有效降低污染源处的气相四氯化碳浓度. 另外,在污染源土壤挖掘结束后,浅层土壤和上方的气相四氯化碳浓度出现显著反弹. 其中,土壤上方的气相四氯化碳浓度的反弹趋势更为显著,在污染源挖掘2.1 h后反弹幅度达2.85倍,且该反弹过程持续约5.4 h才逐渐结束.
通过土壤挖掘试验结果可知,污染土壤挖掘能有效降低污染源处的气相四氯化碳浓度,通过连通污染土壤和大气,加快污染土壤四氯化碳的挥发. 然而,无论是表层土壤挖掘还是污染源土壤挖掘,都会在短时间内提高污染物的释放通量. 在进行表层土壤挖掘1.14 h后,从土壤上方释放的气相四氯化碳通量从9.08 μg/min小幅反弹至9.65 μg/min,反弹幅度为6.3%. 在进行深层土壤挖掘2.1 h后,从土壤上方释放的气相四氯化碳通量从挖掘前的0.087 μg/min大幅反弹至0.33 μg/min,反弹幅度为2.8倍,表明污染源土壤挖掘造成的二次污染物释放的现象更为显著. 在实际的修复过程中,挖掘的方式、速度等均会对土壤中四氯化碳的释放过程带来一定影响,但挖掘导致VOCs加速释放的现象则普遍存在. 例如,甘平等研究了北京某化工场在挖掘过程中的VOCs在空气中的扩散规律,同样发现挖掘扰动会加速VOCs的释放,且在风力的影响下会发生快速的扩散和传播,且其在大气中的扩散规律符合高斯烟团模型. 然而,总体而言,目前针对土壤挖掘过程中VOCs二次释放的研究仍然相对较少. 根据该研究结果,为了最大程度地减小土壤挖掘后VOCs释放通量的反弹幅度,建议将可能受到VOCs污染的土壤尽可能多地移除,从而防止出现修复后VOCs从污染源缓慢释放的现象. 同时,也可以通过减缓土壤挖掘的速度以及减少每次挖掘的土方量等方式来降低挖掘过程中VOCs的瞬时释放量.
2.3 土壤热脱附和气相抽提联合修复过程中的相间非平衡态迁移现象
气相抽提是一种广泛应用的修复VOCs污染土壤的技术. 然而,当气相抽提技术遭遇慢解吸、慢扩散、气流再次吸附以及常温下的污染物有限挥发时,会产生显著的拖尾现象. 而土壤加热能大幅提高VOCs污染物的亨利常数,促进其从固相和液相转移到气相,从而可以大幅提升气相抽提的修复效率. 因此,该文采用土壤热脱附和气相抽提联合技术对四氯化碳污染土壤进行修复,并探讨采用该组合工艺修复过程中的相间非平衡态迁移的现象. 该研究共进行了两次修复试验,其中第一次修复时间为2.50~6.67 h,第二次修复时间为25.77~30.17 h. 在两次修复过程中,土壤内部及上方的气相四氯化碳浓度随时间的变化规律如图5所示. 从图5可知,随着土壤热脱附和气相抽提联合修复过程的进行,土壤内部和上方的气相四氯化碳浓度显著下降. 其中,该技术对土壤上方的气相四氯化碳浓度的降幅最大. 当修复持续约3.58 h后,土壤上方空气、埋深0.02 m及0.12 m处气相四氯化碳浓度的下降比例分别为99.4%、97.9%及80.4%;在第二次修复持续4.4 h后,上述3个位置的气相四氯化碳浓度的降低比例分别为99.3%、98.5%及67.4%,表明该技术对土壤上方空气中四氯化碳的去除效果最显著. 土壤加热使得吸附在土壤颗粒表面的四氯化碳发生脱附,以气相的形式存在于土壤气中,从而提高了气相抽提对土壤中四氯化碳的去除率. 通过对比两次修复过程,发现第二次土壤修复过程中气相四氯化碳浓度的降低速率小于第一次修复过程,尤其是在修复后期出现了浅层土壤及土壤上方的气相四氯化碳浓度下降速率缓慢的现象,拖尾现象较为显著.
图5 土壤热脱附和气相抽提联合技术修复过程中土壤内部及上方气相四氯化碳浓度的变化规律
Fig.5 The variation of gaseous CCl4variation in and above soil during soil remediation process of thermal desorption combined with soil vapor extraction
在进行土壤热脱附和气相抽提联合修复的过程中,连续测定气相抽提管出口处气相四氯化碳的浓度,将其换算成污染物的抽提通量,得到其随时间的变化规律(见图6). 结果显示,两次修复过程中,污染物的抽提通量均随着修复过程的进行而逐渐降低. 在第一次修复持续4.15 h后,气相抽提去除的四氯化碳通量从73.4 μg/min降至9.2 μg/min,下降比例为87.5%. 在第二次修复持续4.35 h以后,气相抽提去除的四氯化碳的通量从9.61 μg/min降至1.11 μg/min,下降比例为88.4%. 并且,第二次修复过程中,在抽提过程持续2 h以后,四氯化碳的抽提通量下降较为缓慢,仅从1.90 μg/min降至1.11 μg/min. 该现象表明,此时渗透性较好的非污染源土壤中的四氯化碳已经基本被去除,而渗透性较差的污染源中仍残留有一定浓度的四氯化碳,且释放过程较为缓慢,从而造成了修复过程存在一定程度的拖尾现象.
图6 土壤热脱附和气相抽提联合技术修复过程中气相抽提通量的变化规律
Fig.6 The variation of extraction flux during the remediation process of thermal desorption combined with soil vapor extraction
对比通过气相抽提抽出的四氯化碳浓度及土壤孔隙中的气相四氯化碳浓度,发现通过气相抽提抽出的四氯化碳浓度显著小于污染源(埋深0.12 m)处,与污染源上方(埋深0.02 m)相接近,且显著大于土壤上方的气相四氯化碳浓度. 例如,在第一次气相抽提持续3.58~4.15 h后,土壤上方、埋深0.02 m及0.12 m处的气相四氯化碳浓度分别为1.06、4.36及102.10 μg/L,但通过气相抽提抽出的气相四氯化碳浓度则为5.12 μg/L. 该结果表明,气相抽提抽走的土壤气有大部分并非来自于污染源区,而是通过优先流的通道从渗透性较好的土壤中流入,从而导致气相抽提对较为致密的污染源中四氯化碳的去除效果相对有限. 通过质量衡算发现,第一次、第二次气相抽提抽走的四氯化碳总质量分别为9.23、0.86 mg,仅占填充的四氯化碳总质量的18.6%和1.72%. 该结果表明,仍有超过70%的四氯化碳残留在土壤中. 这是因为吸附在污染源区土壤内部的四氯化碳并没有发生脱附,其中孔隙中的四氯化碳并没有被抽提而去除,而是由于孔隙流动不畅等原因滞留在污染源区,从而出现了显著的相间非平衡态迁移现象,最终导致较低的四氯化碳去除率.
在两次修复过程结束后,均同时停止热脱附和气相抽提工艺,此时继续对土壤内部和上方空气中的气相四氯化碳浓度进行测定. 结果显示,在第一次修复过程结束后,土壤内部及上方的气相四氯化碳浓度均显著回升〔见图7(a)〕. 在修复结束18.7 h后,土壤上方及埋深0.02 m处气相四氯化碳浓度的反弹幅度分别为28.9和6.3倍,表明四氯化碳释放通量的反弹现象非常显著. 然而,污染源区(埋深0.12 m)的气相四氯化碳浓度在修复结束后仅有小幅反弹的现象,但随后继续逐渐下降. 在第二次修复结束后,土壤中气相四氯化碳浓度的上升趋势更为明显〔见图7(b)〕. 在修复结束38.8 h后,土壤上方空气、埋深0.02 m及0.12 m处,气相四氯化碳的浓度分别反弹至11.1、13.1及17.2 μg/L,反弹幅度分别为64.1、30.9及1.0倍,表明反弹现象在土壤上方及浅层土壤中非常显著,但在污染源区相对不显著. 该结果表明,污染源区存在局部较为致密且四氯化碳浓度较高的区域,这些区域缓慢地释放四氯化碳气体,最终导致污染源区气相四氯化碳浓度的反弹. 因此,在采用土壤热脱附和气相抽提修复VOCs污染土壤时,需要在修复达标后继续对土壤气中的VOCs浓度进行检测,以防止出现由于VOCs浓度反弹造成原先修复达标的土壤再次出现不达标的现象. 然而,相比于没有热脱附耦合的气相抽提技术而言,联合技术产生的拖尾现象及反弹现象较为不显著,污染物更容易达到相间的平衡态,因此该技术较适宜用在黏土较多的污染土壤的修复中.
图7 土壤热脱附和气相抽提联合技术修复结束后土壤内部及上方气相四氯化碳浓度的变化规律
Fig.7 The variation of gaseous CCl4concentration in and above soil after the remediation process by thermal desorption combined with soil vapor extraction
3 结论
a) 表面通风修复VOCs污染土壤过程中会在土壤表面形成一定的负压,在使污染源区VOCs浓度大幅下降的同时,也会导致从土壤中释放到大气中的VOCs通量出现短暂反弹的现象,其最大反弹幅度可达0.69倍.
b) 土壤挖掘是一种修复VOCs污染土壤的有效修复方式,但在土壤开挖的过程中会在短时间内提升污染物从土壤中的释放通量,最大反弹幅度可达2.80倍.
c) 采用土壤热脱附和气相抽提联合修复的技术,能有效降低土壤中及土壤上方的气相VOCs浓度,但在修复过程中通过气相抽提抽出的污染物通量随着修复时间的增加而逐渐下降,出现显著的拖尾现象. 在修复过程结束后VOCs的释放通量出现显著反弹,最大反弹幅度达64.00倍,表明相间非平衡态迁移对修复效果的影响非常显著.
d) 土壤修复过程中的相间非平衡态迁移的影响程度与土壤性质密切相关,该文结论仅适用于粉质沙土或者中沙的情形. 当土壤以粉土或者黏土为主要组成部分时,或者土壤的有机质含量较高时,相间非平衡态迁移的效果会更加显著. 另外,在实际修复过程中,同时应该考虑尺度效应对相间非平衡态迁移的影响.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
#导读#为及时反映生态环保产业过往一年的发展动态,预测新一年的发展趋势,我会组织各分支机构编写了《2024年行业评述和2025年发展展望》,供环保企事业单位、专家和管理者参考。本文为《2024年土壤与地下水修复行业评述和2025年发展展望》,作者为中国环境保护产业协会土壤与地下水修复专业委员会段颖
近日,光大绿色环保旗下光大生态修复(江苏)有限公司成功中标两项环境治理项目,分别为江苏省连云港灌云县临港产业区20个工业企业污染地块土壤修复项目(二标段)(以下简称“灌云县临港产业区项目(二标段)”)、苏州吴江区七都镇受控(简易)填埋场长效管控服务项目(以下简称“苏州七都填埋场服务
近日,中国能建葛洲坝生态环保公司党委书记、董事长杨贞武与温岭市水务集团有限公司党委书记、董事长方斌善会谈,双方围绕全水、土壤修复、固废处置及新能源等领域进行交流并达成广泛认识。方斌善对杨贞武一行到访表示欢迎,并介绍了温岭市生态环保领域的基本情况及未来展望。他表示,双方携手多年,形
近日,皖创环保发布公告,公司副总经理陈刚先生因个人原因辞去公司副总经理职务。皖创环保主营业务包括污水处理、城市地下综合管网、生活垃圾处理、土壤修复、环保管家等。
近日,永清环保股份有限公司发布关于累计诉讼、仲裁情况的进展公告,广西蓝德扣除公司需支付的工期延误损失150万元后向公司支付了工程款1808.55万元及利息。该案件已完结。永清环保发展为以土壤修复为工程核心、以固\危废处置为运营核心,大气污染治理、环境咨询、新能源、双碳业务协调发展的综合性环
4月23日,永清环保股份有限公司发布2023年度财务决算报告,报告显示公司实现营业收入为64580.49万元,比上年同期下降9.47%;归属于上市公司股东的净利润为7984.66万元,较上年同期增长120.63%,归属于上市公司股东的扣除非经常性损益的净利润-1541.87万元,同比增长96.65%。本报告期业绩变动的主要原因
北极星环境修复网获悉,山东青岛崂峰海藻有限公司地块土壤修复工程预中标公示发布,详情如下:
3月20日,长庆油田分公司第二助剂厂土壤修复治理项目EPC总承包招标,招标人为中国石油天然气股份有限公司长庆油田分公司第三采油厂。本工程主要建设内容为根据土壤污染情况,完成第二助剂厂土壤修复治理工程的设计、建构筑物拆除、现场辅助设施采购、污染土壤修复治理、场地恢复、绿化等所有工作,本项
近日,广东省物资产业(集团)有限公司新造油库地块土壤修复项目施工中标结果公布,中标人为广州市第一市政工程有限公司,中标总价3538.782487万元。自中标之日起计,中标人须在180日历天内完成项目所有土壤污染治理与修复,并经省(市)生态环境主管部门对修复效果评估报告组织评审通过并取得验收合格
3月14日,佛山照明禅城总部厂区(中区、北区)地块土壤修复招标,最高投标限价16905.17万元,招标范围为北区地块污染土壤修复总土方量约32736.12m3,污染深度最深约8m;中区地块污染土壤修复总土方量约58709.3m3,污染深度最深约7m。
3月13日,青岛崂峰海藻有限公司地块土壤修复工程招标,本项目总投资额1300万元,工程造价997.344917万元。主要内容包括地块土壤修复、路面拆除及新建等工程。青岛崂峰海藻有限公司地块土壤修复工程招标公告一、项目基本情况1.项目概况:青岛崂峰海藻有限公司地块污染土壤修复工程位于青岛市崂山区沙子
2月8日,浙江省生态环境厅发布《工业涂装工序大气污染物排放标准(征求意见稿)》。详情如下:浙江省生态环境厅关于公开征求地方标准《工业涂装工序大气污染物排放标准(征求意见稿)》意见的通知为推进工业涂装工序废气清洁排放改造,助力深入打好蓝天保卫战,以高水平保护支撑高质量发展,我厅组织对
广东省生态环境厅发布地方标准《汽车维修业大气污染物排放标准》(送审稿),并向社会公开征求意见,本文件规定了汽车维修行业涂料挥发性有机物(VOCs)含量限值要求、有组织排放控制要求、无组织排放控制要求、污染物监测要求和实施与监督要求。适用于现有汽车维修企业或生产设施的大气污染物排放管理
广东省生态环境厅发布关于中央大气污染防治资金调整计划的公示,梅州宁江水泥氮氧化物超低排放提标改造项目、惠州市2023年度工业VOCs深度治理项目(第一批)、惠州市2023年度工业VOCs深度治理项目(第二批)收回资金,梅州皇马水泥有限公司2#线窑尾烟气氮氧化物超低排放改造项目、惠州石化储罐高效呼吸
厦门市生态环境局发布厦门市2024年中央大气污染防治资金(第二批)拟补助项目公示,诚展光学(厦门)有限公司VOCs治理提升改造项目、厦门银祥油脂有限公司2台25蒸吨燃煤锅炉超低排放改造项目、厦门飞鹏高科技铝业有限公司喷涂及印刷车间废气处理设施提升改造项目、远东中乾(厦门)科技集团股份公司2台
天津市生态环境局公开天津市大气污染防治资金拟支持项目清单(2024年第3批),天津市移动污染源监控系统平台建设项目、天津市环境空气质量预测预报及精细化分析能力提升项目、天津南港工业区大气环境VOCs监测及监管能力建设项目3个项目共获得中央资金0.14亿元。天津市大气污染防治资金拟支持项目清单(
陕西省铜川市人民政府11月18日印发《铜川市深化大气污染治理推进实现“十四五”空气质量目标实施方案》,其中提出,铜川市将全面推进VOCs综合治理。持续开展排放高浓度有机废气污水处理厂(站)排查整治;加强含VOCs有机废水储罐、装置区集水井(池)排放的有机废气的密闭收集处理,不断提升涉VOCs企业治理
日前,安徽省宣城市生态环境局公布2024年度中央财政大气污染防治资金管理和使用情况,安徽广德洪山南方水泥有限公司水泥窑氮氧化物超低排放治理技术改造项目等8个项目获得资金支持4697万元。2024年度中央财政大气污染防治资金管理和使用情况我市共有8个项目获得2024年度中央财政大气污染防治资金,其中
江西省公共资源交易平台发布江西大地制药有限责任公司2024年度VOCs废气治理技术设备采购项目招标公告,项目预算1400万元。江西大地制药有限责任公司2024年度VOCs废气治理技术设备采购项目招标项目的潜在投标人应在江西省公共资源交易网获取招标文件,并于2024年11月8日9点30分(北京时间)前递交投标文
为进一步提升挥发性有机物治理能力和治理水平,建立健全VOCs污染防治长效机制,有效减少污染排放,近日,市生态环境局印发《大连市挥发性有机物综合治理工作方案(2024-2025年)》(以下简称《方案》),紧盯VOCs排放环节,突出主要领域、重点行业和关键环节,明确源头控制、深度治理、园区整治和面源
9月25日至26日,生态环境部党组书记孙金龙赴河北省雄安新区、石家庄市调研生态环境保护工作。白洋淀是华北平原最大的淡水湿地系统,被称为“华北之肾”。25日上午,孙金龙到雄安新区调研白洋淀生态环境治理和保护情况,实地察看“科学补水、清淤疏浚、百淀联通、退耕还淀、严密防洪”五大工程,了解实
邯郸市生态环境局2024年公布第二批典型案例。一、河北奥盛生物科技有限公司含VOCs工艺废气未按照规定使用污染防治设施收集处理案(一)案情简介2024年3月24日邯郸市生态环境局永年区分局执法人员陪同生态环境部对河北奥盛生物科技有限公司进行现场检查,该企业为涉挥发性有机物(VOCs)排污单位,其合
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!