方案3是在方案1和方案2的基础上所做的优化,即在下一层喷氨速度稍大于上一层喷氨速度的基础上,对每一层各个喷口的喷氨速度进行调整,喷氨入口1,2,8,9喷口的速度稍小,3,4,5号喷口的速度相对较大,中间速度大两端速度稍小。这是由于SCR反应器入口弯道处圆盘导流板的阻挡,圆盘导流板后形成了回流区,加大了烟气的扰动造成NOx分布不均匀,需要调节喷氨参数,使得NH3/NOx摩尔比在最佳范围内。
方案3中截面1的NH3/NOx摩尔比和NH3浓度区在整个截面上分布都很均匀,明显优于方案1和方案2;方案3中截面2的NH3/NOx摩尔比分布和NH3摩尔浓度分布也很均匀,较方案1和方案2相比截面2右后方的高NH3/NOx摩尔比和NH3/NOx浓度区都明显缩小,几乎消失。
在SCR反应器内第1层催化剂入口截面对应喷氨管等距离截取9条平行于X轴方向的线,比较这几条线上的NH3/NOx摩尔比,如图16所示,可以看出方案3的均匀度NH3/NOx摩尔比优于方案2很多.可见方案3对SCR系统内NH3/NOx摩尔比起到了很好的优化作用。
图16取样的NH3/NOx摩尔比
4结论
(1)通过物理模型速度场冷态实验及机组现场NOx浓度测试实验,分析实验结果,确定出SCR脱硝系统内烟气速度场分布比较均匀,SCR系统喷氨控制不准确,喷氨系统流量分布不合理是造成脱硝效率偏低和氨逃逸较为严重的主要原因。
(2)通过对不同圆盘导流板安装角度下SCR系统流场的数值模拟和结果分析,得出适当调大圆盘导流板的倾角,能够加强圆盘导流板后烟气扰动,可以使NH3、NOx气体在反应器内更充分混合,混合气体的速度分布在Z方向更均匀,有利于NH3、NOx在催化剂层中的反应%
(3)通过对比和分析不同喷氨方案下的数值模拟结果,最终得出有针对性的控制不同区域所对应的喷氨量,对每层各个氨喷口喷氨速度进行合理地差异化调整,可以很好地改善NH3/NOx摩尔比和)NH3浓度分布,使NH3/NOx摩尔比和NH3浓度在整个SCR系统中分布都很均匀,较好地符合了SCR系统设计和运行指标,从而保证了SCR系统的脱硝效率,有效控制SCR脱硝系统的氨逃逸率。
参考文献略
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有