实验所用蒸发塔设计参数参考传统干燥行业5kg˙h-1物料干燥的标准塔型,塔径为1.1m,直筒高度为0.8m,灰斗角度为600;所用给料泵为雷弗BT101L蠕动泵;蒸发塔黑点位置设置温度探头(天津吉星),竖直方向距塔顶的距离分别为13、33、53及76cm,径向方向距塔壁的距离分别为50、33、19及3.5cm;塔体外部用岩棉进行保温(出口处保温效果不好,因此,以塔体底部第2块温度表计为出口烟温);塔顶设置雾化器和气体分布器,其中雾化器为旋流雾化器,直径为50mm,内置16个直径3.3mm的圆形通道,最大处理量为5kg.h-1;电加热器功率为18kW,引风机为SINNEN1.5kW高压风机。
气体分布器和雾化器的布置如图3所示,热空气通过若干进风管和调节阀的控制均匀进入进风通道中,通过导流板的调节呈一定角度旋转并与旋流雾化器出来的雾滴进行充分接触和强烈的传质传热反应。
图3气体分布器和雾化器的布置
雾化器雾矩的测量是将雾化器置于离地面20cm处,地面铺一层吸水纸,以雾化器正下方点为圆心,在吸湿纸画出一个大的圆周,随机间隔1200等角度取3条半径作为测点(位置1一3)进行测量。
2实验结果及讨论
2.1蒸发特性
塔体温度变化可以显示不同区域内脱硫废水的蒸发特性,温度下降越多,说明此区域蒸发反应越激烈。
实验所需脱硫废水含固量为3.92%,密度为1019kg˙m-3。如图4和图5所示分别为为当气体分布器导流板角度为30°和20°、进气温度为300℃、气体通入量为160kg˙h-1时,随着脱硫废水给液量的不同,蒸发塔内温度场的变化趋势。对比图4中(a)图和图5中(a)图可以看出,当导流板角度为300时,塔体高温区集中在距塔顶53cm的水平区域内;当导流板角度为30°时,塔体高温区集中在距塔顶76cm的水平区域内,说明随着导流板角度减小,高温区呈现下移趋势;对比图4(c)图和图5中(b)图可以看出,随着导流板角度的减少,主反应区也呈现下移的趋势。
图4导流板角度为300,塔体温度随喷液量变化
图5导流板角度为200,塔体温度随喷液量变化
分别将图4中(b)一(d)与(a)图进行对比,可以看出雾化器下端(距塔顶13cm处)温降较大,从塔体中心向塔壁方向,温度逐渐降低;随着喷入量的增加,贴近塔壁位置和塔体下部温度下降开始明显,说明随着脱硫废水喷入量的增加,主反应区同时向塔体下部和塔壁方向偏移。蒸发塔的蒸发量与塔径关系密切,当塔径较小时,脱硫废水液滴会粘壁,造成塔壁结构和腐蚀。因此需要通过适当调节,使得液滴在粘壁之前蒸干。
将雾化器取出,置于地面20cm处,地面铺一层吸水纸,间隔1200等角度取3个测定,无风状况下,雾化器雾化半径与给液量的关系如图6所示,从图6中可以看出,雾化器转速为18000r˙min-1的条件下,随着给液量的增加,雾矩增大。
图6雾矩随给液量变化
以3个位置的方差代表雾矩的均匀度,均匀度随给液量的变化如图7所示,可以看出随着给液的增加,雾化器的均匀度变差。
图7雾矩均匀度随给液量变化
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有