北极星环保网讯:以潍坊电厂670 MW火电机组石灰石-石膏湿法烟气脱硫系统改造完成的串联吸收塔为研究对象。在保证SO2达标排放和设计脱硫效率的前提下,对4种运行方式的浆液循环泵能耗进行比对。得出不同循环泵运行方式下的用电和节能情况,以及不同入口SO2浓度下区间最佳系统运行控制方式,以实现FGD的经济性运行。
1 概述
潍坊电厂采用石灰石-石膏湿法烟气脱硫系统(FGD),于2006年建脱硫吸收塔,后经增容改造和提效改造,目前为2台串联吸收塔,设置8台脱硫浆液循环泵,脱硫效率达99.11%以上,出口SO2满足超低排放要求(35mg/m3),目前系统运行稳定。
脱硫浆液循环泵是FGD的核心设备之一,直接影响串联塔的脱硫效率,因其电耗占脱硫系统总电耗50%左右,成为系统节能降耗优化的主要因素。二级塔运行初期主要是以达标排放为主,待串联吸收塔运行平稳后,可在保证机组安全稳定运行和环保达标排放的前提下,根据脱硫系统入口SO2浓度高低分为不同阶段,通过微调吸收塔密度、pH、排浆等运行参数,对脱硫串塔浆液循环泵运行方式的有效控制,达到节能降耗的目的。
以潍坊电厂3#机组(670MW)串联吸收塔为研究对象,分别在不同入口SO2浓度下,保证吸收塔运行pH、密度等参数的相对稳定,对浆液循环泵运行方式优化控制,同时,保证脱硫系统出口满足超低排放要 求。 特 别 研 究 对 比 了“3+2” 与“2+3”“4+2” 与“3+3”运行方式下的节能情况。在脱硫系统入口SO2浓度逐渐升高,依次最佳的浆液循环泵运行方式为“2+1”“2+2”“2+3”“3+3”“4+3”“5+3”,初步实现了FGD烟气达标排放和经济运行,且具有一定的节能效果。
2 串联吸收塔浆液循环泵
潍坊电厂3#机组脱硫系统于2007年投入运行,随着《火电厂大气污染物排放标准》(GB 13223—2011)颁布,于2011年潍坊电厂对脱硫吸收塔实施增容改造,增容改造后喷淋层由4层变为5层,同时,拆除制约脱硫效率的GGH设备。随着新环保法和地方法规的颁布,实施脱硫提效改造,即新增二级吸收塔,由原来的一级塔5层,变为一级塔和二级塔共计8层,将脱硫效率由原来的96.5%提升为99.11%,脱硫净烟道SO2排放指标控制在35mg/m3以下,满足国家和地方超低排放要求。
塔脱硫系统由原“1炉1塔”改为“一炉双塔”,即在一级塔后新增二级塔,同时,配套3台脱硫浆液循环泵和2台氧化风机等,封堵旁路烟道。串联塔共设3A~3H浆液循环泵8台,其主要能耗参数如表1所示。
一、二级吸收塔塔型均是喷淋空塔,其配套的浆液循环泵的具体参数如表1所示。其中,一级塔5台循环泵,二级塔为5台循环泵。一级塔供浆分别在C泵和D泵上,二级塔供浆为吸收塔液位以上供浆。
表1 串联塔脱硫浆液循环泵主要参数
3 影响串联吸收塔运行的主要参数
一级塔p H为4.5~5.5,二级塔p H为5.5~6.5 ;一级塔密度比二级塔高,一级塔石膏排出泵进行石膏脱水。测试过程在吸收塔浆液运行稳定,p H和密度在相对稳定的条件下进行,主要研究了不同脱硫浆液循环泵运行方式的优化,以实现FGD的经济性运行。
3.1 p H控制
一、二级吸收塔均设有p H计、供浆管道,p H可独立控制。从脱硫效率上来讲,一级塔p H控制的低,有利于石灰石的溶解,提高石灰石的利用效率,并促进亚硫酸钙氧化,一般将一级p H控制在4.5~5.5,二级塔控制在5.5~6.5,在此p H值下促进SO2的吸收,有助于提高脱硫效率。
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有