北极星

搜索历史清空

  • 水处理
您的位置:环保水处理工业废水技术正文

技术干货|膜曝气生物膜反应器技术应用于高浓度氨氮废水探讨

2016-03-18 13:52来源:中国百科网关键词:膜曝气生物膜反应氨氮废水收藏点赞

投稿

我要投稿

3 结果与讨论

3.1 生物膜生长过程分析

取MABR稳定运行时期的生物膜,认为此时生物膜结构和组成不再发生显著变化并处于相对稳定状态,生物膜厚度此时达到稳定,结果见表 2.从表 2中可以看出,MABR运行至第38、47、60、78 d的生物膜厚度分别为(76.6±8.4)、(117.7±11.5)、(173.7±16.3)和(255.7±25.0)μm.在MABR运行过程中,生物膜在不断的生长增厚,在运行初期生物膜增长较慢,在0~38 d仅增长至(76.6±8.4)μm,但从60~78 d的18 d过程中,生物膜增长了约82.0 μm.生物膜的增厚相对于活性污泥系统中污泥量的增加,运行后期生物膜增长较快,这与系统中底物浓度NH4+-N的增加密切相关,与活性污泥系统相同,生物膜的厚度存在最优值,生物膜过厚,底物的传质受到限制,在短程亚硝化系统中表现为对亚硝化性能的影响.

表2 MABR中试各阶段的生物膜厚度

3.2 连续运行过程系统中氮素转化

中试MABR连续运行过程中氮素的转化情况如图 2所示.启动阶段反应器出水氨氮浓度逐渐下 降,出水亚硝氮浓度逐渐上升,硝酸盐氮浓度基本维持不变;反应器初始阶段就出现亚硝酸盐的积累现象,初始自由氨(Free ammonium,FA)浓度约为1.29 mg ˙ L-1,当FA浓度大于1 mg ˙ L-1时会对NOB产生抑制,造成了亚硝酸盐的积累,而自由亚硝酸(Free nitrous acid,FNA)的积累(当FNA浓度大于0.22 mg ˙ L-1(Anthonisen et al., 1976))反过来又会对NOB产生抑制作用.同时从图 2溶解氧变化曲线可以看出,在第0~14 d的启动运行阶段,溶解氧浓度迅速从5.3 mg ˙ L-1下降到0.25 mg ˙ L-1.AOB的氧饱和常数一般为0.2~0.4 mg ˙ L-1,而NOB的为1.2~1.5 mg ˙ L-1,低溶解氧首先会对NOB的活性造成抑制,AOB成为优势种群,出水中的亚硝态氮浓度逐渐升高,发生亚硝酸盐积累.阶段Ⅰ,液相中的溶解氧浓度浓度进一步下降,基本维持在0.5 mg ˙ L-1以下,至阶段Ⅱ、Ⅲ、Ⅳ,溶解氧浓度几乎都在0.1 mg ˙ L-1以下,反应器中供氧不足,液相中的溶解氧浓度几乎为零.因此,当生物膜开始在膜丝上形成后,液相中溶解氧的浓度就开始急剧降低至零.

图 2 连续运行阶段氮素转化情况及亚硝化率和DO变化情况

在系统运行的前61 d内,出水硝酸盐浓度很低,仅有亚硝酸盐的积累,亚硝化率(NAR)基本维持在80%以上,系统亚硝化效果较好,MABR系统可以达到稳定的亚硝化;但61d后,也就是运行的第III阶段后期和第IV阶段,出水硝酸盐浓度有逐渐上升的趋势,亚硝化率最终降至65%.这可能是因为前期生物膜较薄,系统运行至第38 d的生物膜厚度仅为(76.6±8.4)μm,生物量较低,第47 d的生物膜厚度为(117.7±11.5)μm,高负荷条件下,液相中高浓度的FA和FNA能够扩散至生物膜内部,对生物膜亚硝酸盐氧化菌(NOB)造成了抑制.后期,随着生物膜的生长增厚,至运行第60 d时,生物膜增厚至(173.7±16.3)μm,过厚的生物膜开始对FA和FNA的传质造成限制,接近曝气膜生长的NOB不受抑制,且氧基质充足,导致部分亚硝酸盐被氧化成硝酸盐,同时亚硝化率出现下降.并且随着运行时间的延长,生物膜进一步增厚,第78 d已增厚至(255.7±25.0)μm,且亚硝化率降至65%;同时,参考Samm等(2000)和Terada等(2007)报道的利用微电极测定的成熟硝化生物膜中各物质的浓度梯度变化,远离膜表面的亚硝酸盐的减少趋势大于硝酸盐,导致亚硝酸盐反硝化得到强化,进而出水亚硝酸盐浓度降低.因此,在本研究中,生物膜的厚度应控制在大约110~170 μm之间,可以实现稳定的MABR部分亚硝化.关于如何控制生物膜厚度,在具体实践中硝化生物膜可以采用定期空气喷射的方式来进行清洗,对处理效率的影响较小.

3.3 氨氮去除负荷

由于本试验的目标是处理高氨氮废水,因此,本试验在同时提高氨氮浓度的情况下调整反应器的HRT,以进水氨氮负荷为控制因素.不同工况下MABR对氨氮去除负荷的变化情况如图 3所示.启动阶段进水氨氮负荷较低,仅为(4.9±0.4)g ˙ m-2 ˙ d-1,氨氮去除负荷逐渐上升并稳定在(3.4±0.5)g ˙ m-2 ˙ d-1,控制HRT,将进水氨氮浓度提高1倍,氨氮负荷升至(10.0±0.8)g ˙ m-2 ˙ d-1,初始前3 d由于高氨氮浓度的刺激作用,氨氮去除率和去除负荷一直处于上升趋势,且最大氨氮去除负荷达到9.3 g ˙ m-2 ˙ d-1.但随着运行时间的延长,总体的氨氮去除负荷和去除率波动较大并出现下降趋势,由于持续高负荷进水、高FA和不充足的氧通量(DO<0.1 mg ˙ L-1),结果造成AOB和NOB的共同抑制.30 d时增加进水氨氮负荷至(14.9±0.2)g ˙ m-2 ˙ d-1考察氨氮的冲击负荷对去除效果的影响,冲击负荷期间,氨氮去除负荷和去除率逐渐下降,恢复进水氨氮负荷至冲击前水平,去除负荷很快恢复到(4.0±0.9)g ˙ m-2 ˙ d-1,说明膜曝气生物膜反应器有很好的对抗冲击负荷能力.

图 3 不同进水负荷下MABR对氨氮去除负荷变化情况

工况Ⅱ、Ⅲ将进水氨氮负荷分别降至(7.4±0.5)g ˙ m-2 ˙ d-1、(7.7±0.7)g ˙ m-2 ˙ d-1,但进水氨氮浓度仍继续增加,分别增加至(246.2±15.1)mg ˙ L-1和(368.1±9.9)mg ˙ L-1,氨氮去除负荷较工况Ⅰ有些许增加,分别为(4.1±0.4)g ˙ m-2 ˙ d-1和(4.6±0.2)g ˙ m-2 ˙ d-1,反应器仍然处于限氧条件.由于溶解氧基质的限制作用限制了氨氮去除负荷的增加,根据清水实验条件下得到的最大氧通量8.5 g ˙ m-2 ˙ d-1,按完全亚硝化计算最大氨氮去除负荷为2.48 g ˙ m-2 ˙ d-1,按完全硝化计算最大氨氮去除负荷为1.86 g ˙ m-2 ˙ d-1. 氨氮去除负荷超过根据清水实验计算的氨氮最大去除负荷近两倍,说明生物膜的存在会显著促进氧传递速率的增加.其他研究(Lackner et al., 2010; Gilmore et al., 2009; Downing et al., 2008)也发现类似结果,曝气膜表面生物膜的生长会显著促进透过膜的氧传质通量,生长有生物膜的MABR中氧传质通量比清水实验中不生长生物膜的MABR高出几倍.Pellicer-Nàcher等(2013)研究也发现,亚硝化MABR系统的运行中,生长生物膜的MABR系统氧传质速率是清水实验条件下的6倍,生物膜的存在对氧传递速率的影响是双重的,一方面会显著改变膜/液界面的氧分配系数,另一方面生物膜的活性也会影响氧的传质性.

工况Ⅳ进水氨氮浓度增加至约575 mg ˙ L-1,进水氨氮负荷增加至(9.1±0.5)g ˙ m-2 ˙ d-1.根据Pellicer-Nàcher等(2013)有关氨氮表面负荷对氧传递速率的影响试验,高负荷条件下的氧传质速率比低负荷条件下高4倍之多,在高氨氮负荷和限氧双重条件下运行的MABR 硝化生物膜会显著地促进内部生物膜的氧摄取速率.因此,工况Ⅳ中虽然溶解氧受到限制,但氨氮去除负荷还有所提高并稳定在(5.7±0.5)g ˙ m-2 ˙ d-1.总体说明在逐步增加进水氨氮浓度的基础上调整进水氨氮负荷,驯化MABR微生物能够达到对高氨氮废水良好的处理性能.

3.4 不同氨氮负荷下部分亚硝化效果

图 4为不同进水氨氮负荷下MABR系统中氮素转化物料平衡.从图 4可以看出,4个工况下进水氨氮负荷分别为10.0、7.4、7.7和9.1 g ˙ m-2 ˙ d-1.由于第Ⅰ阶段氨氮负荷过高导致处理效果不稳定,并且生物膜厚度较薄,因此,参考Terada等(2010)的曝气硅胶膜硝化特性研究,溶解氧的穿透深度在100~150 μm;在本实验第Ⅱ阶段之后,溶解氧已无法完全穿透生物膜,生物膜结构基本相同.对第Ⅱ、Ⅲ、Ⅳ阶段的出水部分亚硝化效果进行对比分析,结果发现,3个阶段出水NO2--N负荷分别为3.40、3.08、2.96 g ˙ m-2 ˙ d-1,且亚硝化率持续下降,由96.3%降至69.1%.从保持高的亚硝酸盐积累量和部分亚硝化效果考虑,本试验MABR最适宜的进水氨氮负荷为7.4 g ˙ m-2 ˙ d-1.同时发现,随着生物膜的增厚,生物膜中出现内层好氧外层缺氧的分层结构,反硝化脱氮量也逐渐增加,由最初的0.2 g ˙ m-2 ˙ d-1增加到1.4 g ˙ m-2 ˙ d-1.

图 4 不同氨氮负荷下MABR内的氮素转化物料衡算

3.5 生物膜SOUR活性

比氧利用速率(以SOUR表征)是评价微生物代谢活性的重要指标,图 5为不同运行阶段MABR生物膜活性(SOUR)的变化情况.从图 5可以看出,在运行至38 d时,相较接种前污泥,MABR中生物膜AOB、NOB的SOUR活性都有较大程度的提高,分别为(133.9±31.1)和(12.1±3.1)mg ˙ g-1 ˙ h-1(以每g SS利用的O2量(mg)计),AOB活性增加明显.主要是因为MABR中特殊的生物膜分层结构及进水高氨氮浓度等环境有助于AOB的积累和活性的表达,这也与反应器中出现亚硝酸盐的大量积累相符.虽然进水中没有有机底物但仍然有异养菌的存在,生物膜中的异氧菌以微生物分泌的胞外聚合物(EPS)为基质进行代谢和生长繁殖.与Liu等(2010)研究的MABR生物膜SOURAOB为52.0 mg ˙ g-1 ˙ h-1相比,本研究的AOB活性要高.在78 d时,由于高氨氮负荷下氧传质速率的增加,AOB和NOB活性也有所增高,但AOB活性仅升高至(134.8±20.6)mg ˙ g-1 ˙ h-1,而NOB活性由于外部基质的抑制减弱从(12.1±3.1)mg ˙ g-1 ˙ h-1升高到(30.6±7.1)mg ˙ g-1 ˙ h-1.这也与运行第Ⅳ阶段出水硝酸盐氮浓度的增加对应,也从微观上说明了过厚的生物膜由于传质的限制,难于保持对NOB的持续抑制和亚硝化的稳定实现,表明生物膜厚度控制对实现MABR亚硝化稳定运行的重要性.

图 5 不同运行阶段MABR生物膜的比氧利用速率(SOUR)比较

3.6 主要功能菌群及其丰度

采用实时定量PCR分析接种前后污泥和生物膜中功能基因的含量.采用AOB的16S rRNA(CTO)定量表征氨氧化菌的丰度变化,以NOB的16S rRNA(NSR)表征亚硝酸盐氧化菌的丰度变化.图 6为反应器接种前污泥和接种后生物膜中功能基因含量对比图,接种前污泥的CTO和NSR含量分别为2.56×103和1.62×104 copies ˙ μg-1(以DNA计).采集反应器稳定运行至38 d时亚硝化阶段的生物膜,得到系统微生物CTO和NSR含量分别为1.53×106和7.91×105 copies ˙ μg-1.相比于活性污泥系统,生物膜系统微生物丰度都有2~3个数量级的提高.AOB和NOB功能基因的比例也由接种前的0.16提高到1.94,说明MABR中AOB逐步成为优势菌群,同时单位生物量AOB微生物丰度值也比普通活性污泥高.

图 6 不同运行时间MABR生物膜中AOB和NOB功能基因拷贝数

运行至47 d时,AOB功能基因的含量增至3.80×106 copies ˙ μg-1,NOB功能基因的含量降至2.49×105 copies ˙ μg-1,这也与此阶段运行数据中亚硝化率最高的实验结果相一致.78 d时,由于生物膜生长过厚而出现缺氧反硝化层,同时由于外层基质的扩散限制,单位DNA的AOB、NOB功能基因量有所下降,分别降至9.20×105和1.75×105 copies ˙ μg-1,同时存在内层NOB的竞争抑制,AOB功能基因含量下降较多.综合整个MABR运行期间,AOB始终作为优势菌群存在于生物膜中,这从微生物生态学角度解释了MABR具有较高的氨氧化速率和亚硝酸盐积累性能变化的内在原因.。

4 结论(Conclusions)

1)MABR的异向传质结构有利于实现亚硝化,但稳定部分亚硝化的实现需要有效控制生物膜的厚度,最佳生物膜厚度需控制在110~170 μm之间,能够有效实现对NOB的抑制和亚硝酸盐的积累.

2)在进水氨氮负荷从(4.9±0.4)g ˙ m-2 ˙ d-1升至(9.1±0.5)g ˙ m-2 ˙ d-1的过程中,进水氨氮浓度由(109.0±9.0)mg ˙ L-1升至(574.6±32.7)mg ˙ L-1,MABR氨氮表面去除负荷可以达到(5.7±0.5)g ˙ m-2 ˙ d-1,MABR对高氨氮废水具有良好的处理性能,本试验MABR 进水氨氮负荷为7.4 g ˙ m-2 ˙ d-1时,部分亚硝化效果最佳.

3)生物膜特性分析表明,维持适宜的生物膜厚度,膜曝气生物膜内AOB的活性SOURAOB可以达到133.9 mg ˙ g-1 ˙ h-1.针对于氨氧化功能基因的实时定量PCR结果表明,MABR生物膜中AOB为优势菌群,且其丰度比普通接种污泥高出3个数量级,这些结果从微生物机理上说明了MABR实现部分亚硝化的内在原因.

原标题:膜曝气生物膜反应器技术应用于高浓度氨氮废水探讨
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

膜曝气查看更多>生物膜反应查看更多>氨氮废水查看更多>