登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
1.UASB和IC反应器工艺原理
1.1 UASB反应器
1.1.1 UASB简介
上流式厌氧污泥床反应器是一种处理污水的厌氧生物方法,又叫升流式厌氧污泥床,英文缩写UASB,由荷兰Lettinga教授于1977年发明。
污水自下而上通过UASB。反应器底部有一个高浓度、高活性的污泥床,污水中的大部分有机污染物在此间经过厌氧发酵降解为甲烷和二氧化碳。因水流和气泡的搅动,污泥床之上有一个污泥悬浮层。反应器上部有设有三相分离器,用以分离消化气、消化液和污泥颗粒。消化气自反应器顶部导出;污泥颗粒自动滑落沉降至反应器底部的污泥床;消化液从澄清区出水。
UASB 负荷能力很大,适用于高浓度有机废水的处理。运行良好的UASB有很高的有机污染物去除率,不需要搅拌,能适应较大幅度的负荷冲击、温度和pH变化。
1.1.2 UASB构造
UASB构造上的特点是集生物反应与沉淀于一体,是一种结构紧凑的厌氧反应器。反应器主要由进水配水系统,反应区,三相分离器,气室,处理水排除系统这几个部分组成。
图1 UASB反应器
1.1.3 UASB工作原理
UASB反应器中的厌氧反应过程与其他厌氧生物处理工艺一样,包括水解,酸化,产乙酸和产甲烷等。通过不同的微生物参与底物的转化过程而将底物转化为最终产物——沼气、水等无机物。
UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至斜壁上的污泥沿着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。
1.2 IC反应器
1.2.1 IC简介
随着生产发展与资金、能耗、占地等因素间矛盾的进一步突出, 水处理工作者必须努力寻求技术经济更优化的厌氧工艺, 尤其是如何处理生产发展带来的新的高浓度有机废水更使得这一努力成为必要。内循环厌氧反应器( IC )即是这一背景下产生的新型反应器, 是厌氧废水处理理论与工程实践相结合的产物,体现了厌氧工艺自身发展要求。1985年, 荷兰 PAQU ES 公司建立了第一个IC中试反应器, 1988年, 第一座生产性规模的IC 反应器投入运行。目前, IC 反应器已成功应用于啤酒生产、食品加工等行业的生产污水处理中。由于其处理容量高、投资少、占地省、运行稳定等特点, 引起了各国水处理人员的瞩目,有人视之为第三代厌氧生化反应器的代表工艺之一。进一步研究开发 IC反应器、 推广其应用范围已成为厌氧废水处理的热点之一。
1.2.2 IC构造
IC反应器由两个UASB反应器上下叠加串联构成,高度可达16~25m, 高径比一般为4~8, 由5个基本部分组成: 混合区、颗粒污泥膨胀床区、 精处理区、内循环系统和出水区。其中内循环系统是IC工艺的核心结构,由一级三相分离器、沼气提升管、气液分离器和泥水下降管等组成。
图2 IC反应器
1.2.3 IC工作原理
经过调节 pH 和温度的生产废水首先进入反应器底部的混合区 , 并与来自泥水下降管的内循环泥水混合液充分混合后进入颗粒污泥膨胀床进行COD的生化降解, 此处的COD容积负荷很高, 大部分进水COD在此处被降解 , 产生大量沼气。沼气由一级三相分离器收集。由于沼气气泡形成过程中对液体所作的膨胀功产生了气体提升作用 , 使得沼气、 污泥和水的混合物沿沼气提升管上升至反应器顶部的气液分离器 , 沼气在该处与泥水分离并被导出处理系统。泥水混合物则沿泥水下降管进入反应器底部的混合区 , 并与进水充分混合后进入污泥膨胀床区, 形成所谓内循环。根据不同的进水 COD负荷和反应器的不同构造 , 内循环流量可达进水流量的0. 5~5倍。经膨胀床处理后的废水除一部分参与内循环外 , 其余污水通过一级三相分离器后, 进入精处理区的颗粒污泥床区进行剩余COD降解与产沼气过程 , 提高和保证了出水水质。由于大部分 COD已被降解, 所以精处理区的COD负荷较低 , 产气量也较小。该处产生的沼气由二级三相分离器收集, 通过集气管进入气液分离器并被导出处理系统。经过精处理区处理后的废水经二级三相分离器作用后, 上清液经出水区排走 , 颗粒污泥则返回精处理区污泥床。
2.UASB和IC反应器国内外研究现状
2.1 UASB反应器国内外研究现状
UASB 反应器作为如今高效厌氧反应器中应用最广泛的反应器之一,具有能耗低、造价低、能产生生物能等特点, 因而是值得推广应用的一种新型生化厌氧处理反应器。长期以来被广泛应用于各种类型的废水处理,在国内外的应用研 究中也常常出现。在国外如美国、芬兰、泰国、瑞士、加拿大和奥地利都曾利用UASB反应器处理各种生产废水,如甜菜制 糖加工废水、啤酒和酒精加工废水、生活污水、牛奶废水的处理等,都取得了较好的处理效果。我国于1981年开始了对UASB反应器的试验研究,许多单位在处理高浓度有机废水时采用 UASB 反应器进行处理,已取得了较好的成效。对于UASB反应器等厌氧处理构筑物处理高浓度有机废水,其出水一般未能达到废水的最终排放要求,所以往往采取与其他处理工艺相结合的方式。 在90年代末期出现了UASB与其他工艺联合使用的例子,如 UASB-AF工艺处理维生素C废水,上流式厌氧污泥床过滤器处理涤纶废水等,提高了处理效果。
2.2 IC反应器国内外研究现状
从 IC 反应器的工程实践看,国内沈阳、上海率先采用了 IC工艺处理啤酒生产废水。以沈阳华润雪花啤酒有限公司采用的IC反应器为例, 反应器高16 m, 有效容积70 m 3 , 每天处理平均COD浓度为4300 mg / L 的啤酒废水 400 m 3 ,在COD去除率稳定在80%的条件下, 容积负荷高达25~30 kg /m 3˙d。公司在解决处理生产废水问题的同时, 经济上也获得较大收益:每年节省排污费 75万元 , 沼气回收利用价值 45万元, 相比之下, 反应器年运行费用仅为62万元。可见, IC工艺达到了技术经济的优化。IC 工艺在国外的应用以欧洲较为普遍, 运行经验也较国内成熟许多, 不但已在啤酒生产、土豆加工、造纸等生产领域内的废水处理上有成功应用, 而且正日益扩展其应用范围, 规模也越来越大。荷兰SEN SUS公司就建造了容积为 1100 m 3 的IC 反应器处理菊粉 ( inuline ) 生产废水, 而据估算, 如采用UASB反应器处理同样废水,反应器容积将达 2200 m 3 ,投资及占地也将大大增加。1995年该反应器初期运行时,日处理 COD浓度约为7200 mg / L 的废3960 m 3 ,水力负荷达 30 kg COD /m 3˙d, COD去除率稳定在70%~80%。
3.UASB和IC反应器异同比较
UASB在国内广泛应用,也得到许多水处理专业人士的认可。IC是一种内循环反应器,其构造就相当于将两个UASB叠加起来,可以看成UASB的衍生系统。IC反应器与UASB 反应器处理相同废水的对比结果如表1。
表1在给出 IC反应器实际应用的同时, 对采用UASB工艺处理相同废水进行了比较。可以看出, IC反应器很大程度上解决了UASB的相对不足, 大大提高了单位反应器容积的处理容量。
下面,我通过表格将两个系统各自优缺点进行归纳一下:
4.UASB和IC的应用实例
4.1 山东青援食品集团玉米淀粉废水UASB处理工艺
玉米淀粉废水含有丰富的碳水化合物及氮、 磷等营养物, CODCr界于10000~20000 mg/L 之间, 属可生化性较好的高浓度有机废水, 适宜采用生化处理工艺。废水中悬浮物及胶体蛋白含量较高,含量过高对厌氧污泥系统的发展会产生不利影响。玉米浸泡过程中会有少量 SO32-及SO42-进入废水系统, 在厌氧处理过程中, 这些含硫的化合物被微生物还原为硫化氢, 当亚硫酸盐及硫化氢超过一定值时, 就会对厌氧系统产生一定的抑制作用。
图3 玉米淀粉废水处理工艺流程
该工程 UASB 装置设计尺寸为:θ8×16 m , 有效容积750 m3 , 停留时间36 h。UASB装置的主要作用是将废水中高分子有机物降解为低分子有机物, 并去除废水中大部分有机物。
4.2 燕京啤酒集团啤酒废水IC处理工艺流程
2004年5月,燕京集团总部投资500多万元,从上海荷兰帕斯公司引进了好氧、厌氧相结合的污水处理系统的IC反应器,新技术工艺不仅大大节约了用水量,各项污染物排放指标也远低于国家规定的排放标准,使污水排放达到绿色奥运标准。
原水中COD值一般在1300-1500 mg/L,经过IC反应器后,COD降到600-700 mg/L,通过SBR处理后,出水COD在60 mg/L以下,符合二级出水标准。
啤酒废水一般偏酸性(pH5~6),含有大量的悬浮固体(SS为400~1000mg/L),含有大量易生物降解的有机物(COD为1500~3000mg/L)。废水中BOD/COD高达0.5~0.7,一般不含有毒有害成份,具有良好的可生化性能。若仅采用好氧法处理,存在能耗高、费用大等问题,若结合先进的厌氧处理技术,将提高效率,降低处理费。本套工艺就是先采用目前较为先进的IC厌氧处理技术,但是光用厌氧处理,出水不达标,且水中溶解氧较低,不能直接排放,所以用SBR进一步处理,然后排放,处理效果好。
5.总结与展望
与UASB等第二代厌氧反应器相比,IC反应器具有以下优点:<1>有机负荷率高,水力停留时间短;<2>高径比大,占地面积小,基建投资省;<3>出水稳定,耐冲击负荷能力强。国内现在越来越多的厂家开始运用IC反应器,它的沼气回收利用价值也很大,IC反应器最大的特点是拥有两个厌氧反应室。并实现了泥水混合液在反应器内部的循环。这样就解决了UASB反应器中由于泥水接触不够充分导致颗粒污泥生化处理能力减弱的负面影响。
因此,IC反应器是对现代厌氧反应器的一个突破,在工业上应用于废水处理有机污染物具有广阔的发展前景,将越来越多的替代UASB反应器,值得进一步研究开发与推广。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
厌氧反应器中有时会产生大量泡沫,泡沫呈半液半固状,严重时可充满气相空间并带入沼气管道,导致沼气系统的运行困难。
厌氧消化系统试运行的一个主要任务是培养厌氧污泥,即消化污泥。厌氧活性污泥培养的主要目的是厌氧消化所需要的甲烷细菌和产酸菌,当两种菌种达到动态平衡时,有机质才会被不断地转换为甲烷气,即厌氧沼气。
升流式厌氧污泥床反应器是一种处理污水的厌氧生物方法,又叫升流式厌氧污泥床,英文缩写UASB(Up-flowAnaerobicSludgeBed/Blanket)。由荷兰Lettinga教授于1977年发明。污水自下而上通过UASB。反应器底部有一个高浓度、高活性的污泥床,污水中的大部分有机污染物在此间经过厌氧发酵降解为甲烷和二氧化
一般来说,对于以产甲烷为主要目的的厌氧过程要求pH值在6.5~8.0之间,废水碱度偏低或运行负荷过高时,会引起反应器内挥发酸积累,导致产甲烷菌活力丧失而产酸菌大量繁殖,持续过久时,会导致产甲烷菌活力丧失殆尽而产乙酸菌大量繁殖,引起反应器系统的“酸化”。严重酸化发生后,反应器难以恢复至原有
摘要:本文介绍了厌氧膨胀颗粒污泥床(EGSB)的构造与工作原理,指出了EGSB反应器的优缺点,并总结了其在废水处理中的研究现状。关键词:厌氧膨胀颗粒污泥床(EGSB);废水处理;工作原理;研究引言厌氧膨胀颗粒污泥床(ExpandedGranularSludgeBed,简称EGSB)是由荷兰Wageningen农业大学的Lettinga等人
根据污泥的活性不同,有的颗粒污泥卖1200~1400元/吨,而有的只能卖到500~600元/吨;价格相差一倍多。那么如何判断污泥的活性,如何买到质量可靠的厌氧污泥呢?今天,我们就和大家来聊聊如何判断厌氧颗粒污泥活性的话题。一、厌氧颗粒污泥的性能可以通过以下七个方面进行判断:1.颜色活性良好的厌氧颗粒
一、UASB反应器简介上流式厌氧污泥床(UASB),是一种处理污水的厌氧生物方法,又叫升流式厌氧污泥床,英文缩写UASB。污水自下而上通过UASB。反应器底部有一个高浓度、高活性的污泥床,污水中的大部分有机污染物在此间经过厌氧发酵降解为甲烷和二氧化碳。因水流和气泡的搅动,污泥床之上有一个污泥悬浮层
一、活性污泥投加1、接种前准备:菌种培养构筑物的选择:方便操作,有曝气装置,有搅拌,利于加菌种、进原水或营养液的构筑物。菌种在投加时,方案设定应根据现场具备的条件综合考虑。如场地、施工、运输车辆、临时电源、临时泵及管道、水枪、高差、过滤等因素。菌种的粉碎对于压缩污泥应考虑污泥的粉
8月7日,中国能建葛洲坝水务公司中标埃塞俄比亚亚的斯亚贝巴卡里提污水处理厂运营维护服务项目。这是该公司“走出去”第一单。卡里提污水处理厂运维项目位于埃塞俄比亚首都南部卡里提地区,设计规模为10万吨/日,处理工艺采用上流式厌氧污泥生物反应(UASB)+生物滴滤技术组合方案。项目运营期为3.5年
1、厌氧反应器内出现泡沫、化学沉淀等不良现象的原因是什么?厌氧反应器中有时会产生大量泡沫,泡沫呈半液半固状,严重时可充满气相空间并带入沼气管道,导致沼气系统的运行困难。产生泡沫的主要原因是厌氧系统运行不稳定,因为泡沫主要是由于CO2产量太大形成的,当反应器内温度波动或负荷发生突变等情
厌氧序批式反应器是20世纪90年代美国Iowa州立大学RidRDague教授提出并发展起来的一种新型高效厌氧反应器,它能使污泥在反应器内的停留时间SRT大大延长,增加反应的污泥浓度,并能够进行充分的泥水混合,从而提高了厌氧污泥的处理能力,越来越受到各国学者的关注。ASBR的基本操作厌氧序批式反应器的操作
升流式厌氧反应器(UASB)中废水通过布水装置依次进入底部的污泥层和中上部污泥悬浮区。与其中的厌氧微生物进行反应生成沼气,气、液、固混合液通过上部三相分离器进行分离,污泥回落到污泥悬浮区,分离后废水排出系统,同时回收产生的沼气。注:常规的UASB没有外循环泵(在水力负荷特别低,造成上升流
推荐理由:垃圾渗滤液含有高浓度的NH4+-N,属于难降解废水。传统脱氮工艺需投加大量无机碳源,是造成垃圾渗滤液处理成本高的原因之一。与传统脱氮工艺相比,厌氧氨氧化(Anammox)技术可大幅减少曝气量且无需投加碳源,从而降低垃圾渗滤液处理成本。然而,针对亚硝酸盐型厌氧氨氧化过程来说,实现这一
一、厌氧生物处理的基本原理厌氧生物处理,就是利用厌氧微生物的代谢特性,将废水中有机物进行还原,同时产生甲烷气体的一种经济而有效的处理技术。废水厌氧生物处理技术(厌氧消化),就是在在无分子氧条件下,通过厌氧微生物的作用,将废水中的各种复杂有机物分解转化成甲烷和二氧化碳等。厌氧与好氧过
升流式厌氧污泥床反应器是一种处理污水的厌氧生物方法,又叫升流式厌氧污泥床,英文缩写UASB(Up-flowAnaerobicSludgeBed/Blanket)。由荷兰Lettinga教授于1977年发明。污水自下而上通过UASB。反应器底部有一个高浓度、高活性的污泥床,污水中的大部分有机污染物在此间经过厌氧发酵降解为甲烷和二氧化
1.UASB反应器的反应原理UASB反应器可分为两个区域,反应区和气、液、固三相分离区。在反应区下部是由沉淀性能良好的污泥(颗粒污泥或絮状污泥),形成厌氧污泥床。当废水由反应器底部进入反应器后,由于水的向上流动和产生的大量气体上升形成了良好的自然搅拌作用,并使一部分污泥在反应区的污泥床上方
摘要:江西某油脂有限公司的生产废水和冲洗废水采用混凝气浮/UASB/生物接触氧化/混凝沉淀组合工艺处理。采用隔油+混凝气浮进行预处理,油脂去除率高且稳定;以UASB和生物接触氧化为主体工艺,污泥浓度高,处理效果好。稳定运行后,出水COD为89mg/L,BOD5为19mg/L,SS为69mg/L,动植物油为10mg/L,均达到
UASB反应器的二次启动是相对于初次启动说的。所谓初次启动是指用颗粒污泥以外的其它污泥作为种泥启动一个UASB反应器的过程。而二次启动是指使用颗粒污泥作为种泥对UASB反应器的启动。1、UASB二次启动要点颗粒污泥是UASB启动的理想的种泥,使用颗粒污泥的二次启动大大缩短了启动时间,即使对于性质不同
厌氧反应器内颗粒污泥形成的过程称之为颗粒污泥化,颗粒污泥化是大多数UASB反应器启动的目标和启动成功的标志。污泥的颗粒化可以使UASB反应器允许有更高的有机物容积负荷和水力负荷。初次启动是对一个新建的UASB系统以未驯化的非颗粒污泥接种,使反应器达到设计负荷和有机物去除效率的过程,通过这一过
升流式厌氧反应器(UASB)中废水通过布水装置依次进入底部的污泥层和中上部污泥悬浮区。与其中的厌氧微生物进行反应生成沼气,气、液、固混合液通过上部三相分离器进行分离,污泥回落到污泥悬浮区,分离后废水排出系统,同时回收产生的沼气。注:常规的UASB没有外循环泵(在水力负荷特别低,造成上升流
摘要:采用水解酸化-UASB法处理浓度较高的酿酒废水,能够很好地降低累积有害物质的程度,使其与我国的排放标准一致。现阶段,许多酒厂均利用了这种方法进行废水处理。为此,本文主要针对高浓度酿酒废水,研究了水解酸化-UASB这种处理方法,仅供参考。关键词:酿酒;废水;UASB处理技术我国拥有悠久的传
一、UASB反应器简介上流式厌氧污泥床(UASB),是一种处理污水的厌氧生物方法,又叫升流式厌氧污泥床,英文缩写UASB。污水自下而上通过UASB。反应器底部有一个高浓度、高活性的污泥床,污水中的大部分有机污染物在此间经过厌氧发酵降解为甲烷和二氧化碳。因水流和气泡的搅动,污泥床之上有一个污泥悬浮层
好氧颗粒污泥(aerobicgranularsludge,AGS)是微生物在好氧环境中自凝聚形成的一种形状规则、结构紧密的颗粒状活性污泥。相比传统好氧工艺,具有更好的沉降性能、污染物去除能力以及对金属阳离子的吸附能力等,具有广泛的应用前景,而AGS的形成所需时间较长是工程应用的一大挑战,其造粒机理也成为了国内外学
1成果简介近日,清华大学环境学院王凯军教授团队和北京华益德环境科技有限责任公司张凯渊团队联合在环境领域期刊中国给水排水上发表了题为“连续流好氧颗粒污泥技术升级现有污水处理工程”的论文。该团队在继3000m3/d的中试后,在河北省某市政污水处理厂的现有构筑物中实施了设计规模为2.5×104m3/d的
谈论污水处理界的技术创新,好氧颗粒污泥(AerobicGranularSludge,简称AGS)是近几年颇受关注的明星技术。与传统活性污泥方法相比,好氧颗粒污泥有更好的沉降性能、更好的生物富集能力,以及更强的抗冲击能力。好氧颗粒污泥自发形成立体分层的微生物群落,包含聚磷菌(PAOs)、氨氧化菌(AOB)、亚硝酸盐氧
我国污水处理已经走过了百年历史,当前,污水处理行业一方面需要应对持续增长的污水处理量和高品质出水要求,另一方面“双碳”目标也对污水处理提出了新要求。在此背景下,新一代革命型污水处理技术——好氧颗粒污泥技术成为行业热点。与传统活性污泥絮体相比,好氧颗粒污泥形状规则,结构紧凑致密,沉
摘要:Nereda工艺是一种成熟可靠的应用于污水生化处理的好氧颗粒污泥技术。凭借Nereda反应器的特殊内件及运行周期,Nereda工艺具有同时脱氮除磷的优异性能。以荷兰3座应用Nereda技术的市政污水厂(Epe,Utrecht和Garmerwolde污水厂)为工程案例,详细介绍了它们的概况以及实际的脱氮除磷运行表现。最后
上个月,美国水研究基金会(WRF)公布了其2022年度PaulL.Busch水业创新奖(下文简称PLB奖)的得主,来自堪萨斯大学的BelindaSturm教授获此殊荣。PLB奖已设立超过20年,过去两年的PLB奖均由华人获得,包括美国范德堡大学的林士弘教授以及普林斯顿大学任智勇教授。该奖以WRF前主席PaulBusch命名,以纪念他
人类目前面临的环境压力迫使我们不得不发展循环经济,而强调纳入生态循环的蓝色发展则突显人类回归自然的属性,也是对我们祖先“天人合一”信念的坚守。传统污水处理固然可以清洁污水,但高能耗、高物耗摧毁其中资源/能源的作法难以持续维系。鉴于此,经过多年务实国内外合作,我们特意打造了旨在物质/
2020年,欧盟的地平线(Horizon2020)多了一个名叫水矿(WaterMining)的项目。顾名思义,就是要从水中挖矿,在污水生物处理工艺的副产物中挖掘可商业化的产品。这个项目从2020年9月正式开始,吸引了12个国家、38个机构的参与,总预算高达1910万欧。该项目计划在4年的时间里,分别对海水、城市污水和工业废
活性污泥法是我国污水处理厂(WWTP)对污废水生物处理应用最广泛的工艺。但该工艺存在占地面积大的问题,应用范围受到限制。好氧颗粒污泥(AGS)是微生物在特定条件下相互聚合形成的结构紧凑、外形规则的微生物聚合体,与传统的活性污泥法相比更具优势,如占地面积小、沉降性能良好、生物量浓度高、耐
最近有不少读者私信小编,好奇为啥频繁撰写和好氧颗粒污泥有关的文章。小编只能说,因为这是时下的一个热点。好氧颗粒污泥自成立体分层的微生物群落,包含聚磷菌(PAOs)、氨氧化菌(AOB)、亚硝酸盐氧化菌(NOB)、反硝化异养菌甚至还有厌氧氨氧化菌(anammox)。它的分层结构使得颗粒污泥通过底物扩散传质作
今天,小编带大家参观龙游县城南每天2万立方米工业污水处理厂——国内首座好氧颗粒污泥(AGS)技术工业化污水处理厂。详细了解北控工业环保在工业污水厂处理单元与生活污水厂的统筹,对生化处理工艺的升级,节省占地,减少投资。项目背景随着各大城市的快速发展,污水处理量日益增加,且污水需要进行分
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!