登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
摘 要:选取前期实验中从长庆油田措施废液集中处理后残渣中筛选的 3 株高效石油烃降解菌 D1、D2、 D5 作为研究对象,采用吸附法制备固定化菌剂,制备过程的最佳条件为:秸秆和草炭固定化菌剂的最佳固定 化时间均为 36 h,木炭的最佳固定化时间为 30 h;秸秆固定化菌剂和草炭固定化菌剂的最优载体加入量为 3.0 g/100 mL 菌悬液;木炭固定化菌剂的最优载体加入量为 2.0 g/100 mL 菌悬液。秸秆固定化的最佳 pH 为 7.0,草 炭和木炭固定化的最佳 pH 为 7.5;三种载体固定化菌剂的最佳固定化温度均为 35 ℃。在未灭菌的含油土壤 40 d 的室内原位模拟修复过程中,各固定化菌剂对石油烃的降解率大小依次为:草炭固定化菌剂 74.12%>木炭固 定化菌剂 70.25%>秸秆固定化菌剂 60.74%>游离混合菌 35.48%>不加菌对照 11.98%。在灭菌的含油土壤的修复过程中,几种处理方式对石油烃的降解率大小依次为:木炭固定化菌剂 70.75%>草炭固定化菌剂 69.90%>秸秆 固定化菌剂 68.28%>游离混合菌 44.30%>不加菌对照 2.21%。
关 键 词:固定化菌剂;微生物修复;复合菌群
含油土壤是指由于在油田采油及运输途中,由 于不正常的操作或其他事故等造成的落地原油与泥 土或其他杂质形成的含油固体废物[1]。针对含油土 壤的治理,国内外提出了较多的处理方法以及工艺 流程,但因含油土壤成分和性质较为复杂,每种治 理方法都存在一定的局限性。微生物降解技术因其 成本较低、操作简便、无二次污染、效果好等特点 而被广泛采用。石油是一种由各种烃类和非烃类物 质构成的复杂化合物。微生物对于烃类化合物的降 解有各自的局限性,通常单个菌株只能降解一定范 围内的石油烃,并且降解代谢过程往往是分步进行 的,复合菌群是由具有相互协同促进的多种菌株组 成的群体,利用不同菌株的协同作用,扩大底物的 范围,可以较好的提高石油烃的降解效率,则可形成一个完整高效的降解系统[2]。由于石油烃污染修复的降解菌大部分都是游离菌,降解过程中因为污染物的成分复杂,产生的一些次生代谢产物和中间 产物具有较大的毒性,而且很难被微生物所降解。 因此,固定化技术被逐渐引入土壤的修复中来[3]。 吸附法是一种比较简单的固定化方法,因其 具有固定操作简单、反应条件较温和、固定化成 本低等多重优点而被广泛应用于含油土壤和废水的治理 [4]。本文制备了三种固定化复合菌剂并对其性能进行了研究。
1 实验部分
1.1 试验材料
1.1.1 菌种来源
实验室前期从含油土壤中筛选出的的 3 株高效 石 油 烃 降 解 菌 株 : D1 ( Bacillus sp. ) 、 D2 (Streptococcus sp.)和 D5(Alcaligenes sp.)。
1.1.2 培养基的制备
基础培养基为牛肉膏蛋白胨培养基和无机盐培 养基(NH4NO3 2.0 g,K2HPO4 1.0 g,KH2PO4 0.5 g, 无水 CaCl2 0.02 g,MgSO4.7H2O 0.5 g,NaCl 5.0 g)。 在上述无机盐培养基中加入 0.5%原油即可得原油 液体培养基,再添加一定比例琼脂即可得原油固体 培养基。
1.1.3 试剂与仪器
石油醚、Na2HPO4、NH4Cl 和无水硫酸钠皆为 分析纯。紫外可见分光光度计(北京普析通用仪器 有限责任公司)。
1.1.4 载体来源
秸秆:陕西省渭南市某县收集;木炭:购置于 广州科骆尔生物能源科技有限公司;草炭:购置于 辽宁清原泥炭土加工厂。以上载体经通风阴干后用 粉碎机粉碎,过 80 目筛,备用。
1.2 实验方法
1.2.1 固定化复合菌剂的制备
将 3 株单菌的菌悬液分别按照正交优化条件下 的最佳的接种比例混合即可制得混合菌悬液;分别 称取 2.0 g 的三种载体,加入到装有 100 mL 牛肉膏 蛋白胨培养基的 250 mL 锥形瓶中,121 ℃高压灭菌 20 min。接入 6 mL 混合菌悬液,150 r/min,30 ℃ 恒温摇床震荡培养 36 h 后,用双层纱布进行过滤, 并用灭菌的生理盐水进行洗涤 2~3 次,即可得固定 化复合菌剂[5]。
1.2.2 原油降解率的测定
原油降解率的测定采用超声萃取-紫外分光光 度法进行测定。在无菌条件下,接入固定化的复合菌剂至装有 100 mL 灭菌的原油液体培养基中,30 ℃、150 r/min 恒温摇床震荡培养 7 d 后,加入 25 mL 石油醚,超声波萃取其中的石油,此步骤重复 3 次, 将上层液合并转至分液漏斗,收集上层萃取液,过 滤后进行定容,以石油醚作为空白参比,测定 OD 值,计算含油率,与初始的含油量作对比,计算原 油降解率[6]。
1.2.3 固定化菌剂与载体、载体-菌液混合物的降解对比实验
首先准备 10 组已灭菌的 100 mL 原油液体培养 基,在其中分别加入 6 mL 混合菌液、2.0 g 载体(3 种)、2.0 g 载体(3 种)与 6 mL 混合菌液的混合 物、2.0 g 载体固定化菌剂(3 种),150 r/min,30 ℃ 恒温摇床震荡培养 5 d,测定原油降解率。
1.2.4 最佳固定化时间的确定
称取 2.0 g 三种载体,接入 6 mL 混合菌液之后, 150 r/min,30 ℃恒温摇床震荡培养 18、24、30、36、 42、48 h 后,制得固定化菌剂,将其加入 100 mL 原 油液体培养集中,30 ℃,150 r/min 水浴摇床震荡培 养 5 d,测定原油的降解率,以判断最佳固定化时间。
1.2.5 最佳固定化载体的量的确定
分别称取 1.0、2.0、3.0、4.0、5.0 g 载体,接入 6 mL 混合菌液,150 r/min,30 ℃恒温培养 36 h, 得固定化菌剂。加入 100 mL 原油液体培养基,150 r/min,30 ℃恒温培养 5 d,测定原油的降解率。
1.2.6 最佳固定化
pH 的确定 2.0 g 载体,接入 6 mL 混合菌液之后, pH 调 为 6.0、6.5、7.0、7.5、8.0,150 r/min,30 ℃恒温 培养 18、24、30、36、42、48 h,制得固定化菌剂。 将其加入 100 mL 原油液体培养基中,30 ℃,150 r/min 水浴摇床震荡培养 5 d,测定原油的降解率。
1.2.7 最佳固定化温度的确定
称取 2.0 g 三种载体,接入 6 mL 混合菌液之后, 分别置于不同温度恒温摇床中培养 36 h 后,制得固 定化菌剂,将其加入 100 mL 原油液体培养集中, 30 ℃,150 r/min 水浴摇床震荡培养 5 d,测定原油 的降解率。
1.2.8 固定化复合菌剂对含油土壤的修复
将配置好的5%的原油浓度的供试土壤200 g放 入 100 mL 烧杯中。在含油土壤中加入 10%的各种 固定化复合菌剂,每个处理设 3 个平行对比实验。 含油土壤分为灭菌组和未灭菌组不同处理。30 ℃培 养 40 d,每 2 d 补加无菌水,使其含水率保持在 35% 左右,每天翻动土壤。分别在 0、5、10、15、20、 25、30、35、40 d,四分法取样测定原油降解率。
1.2.9 土壤中石油烃含量的测定
将降解后的含油土壤风干后磨碎,称取 2.0 g 试样置于 50 mL 比色管中,加入 25 mL 石油醚超声 15 min,过滤收集滤液至 50 mL 烧杯中,再加入 20 mL 石油醚进行超声波提取,合并提取液至 100 mL 容量瓶中,紫外测定含油浓度。降解率计算如下:
2 结果与讨论
2.1 固定化菌剂与载体、载体-菌液混合物的降解效果的对比
由图 1 可以看出,降解率最高的是草炭固定化 菌剂,达到了 92.02%,再依次是木炭固定化菌剂和 秸秆固定化菌剂,降解率分别为 89.28%和 85.25%, 均高于单独投加载体和载体-菌液混和物的降解率。
2.2 最佳固定化时间的确定
不同固定化时间制得的固定化菌剂,原油降解 效果如图 2 所示。 由图 2 可以看出,三种载体固定化菌剂的原油 降解率均呈先升高再下降的趋势。秸秆和草炭固定 化菌剂的最佳固定化时间均为 36 h,原油降解率最 高达到了 87.46%和 87.07%;木炭的最佳固定化时 间为 30 h,原油降解率为 83.89%。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
摘要:介绍了表面活性剂强化修复技术(SER)的原理,并开展SER修复饱和带石油类污染土壤(含油土壤)室内研究。经过20d的SER修复,模拟受石油类污染的饱和带土壤,已接近修复终点,土壤中总石油烃(TPH)平均浓度,由初始的13.25g/kg降至4.30g/kg,去除率达到67.5
摘要:石油泄漏对环境、经济和社会造成负面影响。有效的修复技术是油污土壤(含油土壤)治理关键,化学修复已经证明可在原位和易地、低成本、环境代价小修复石油污染的土壤(含油土壤)。笔者综述了化学氧化、电动修复等技术原理及应用效果,评价了化学修复技术的优缺点,阐述了化学修复技术的研究热点
摘要:我国的土壤资源在使用方面已经被占用十分严重,长期的生产活动导致大量污染物进入土壤环境,现代化进程中出现化学污染、工业污染等对土壤的负载净化能力造成了巨大压力,土壤的生态面临着严峻的考验。我国政府对土壤污染治理十分重视,为了恢复土壤生态环境,使土壤能够持续为人类提供资源,提出
[摘要]为解决石油污染土壤(含油土壤)中以石油为唯一碳源的土著微生物生长缓慢的问题,研究了分别添加玉米淀粉、玉米粉、可溶性淀粉和葡萄糖4种碳源对土样细菌总量和石油烃降解率的影响。研究结果表明:玉米淀粉作为碳源时土样TN和TP的下降幅度均最大;添加玉米淀粉和玉米粉比添加可溶性淀粉和葡萄
摘要:化学洗涤法修复石油污染土壤(含油土壤)具有修复时间短、操作简单、能耗低、适应性广、可资源化回收洗脱石油等优点,从表面活性剂复配、助剂应用、过程强化以及石油污染土壤(含油土壤)性质的影响等方面对近年来化学洗涤法修复石油污染土壤(含油土壤)的研究进行了评述。为推动该方法的实际应
[摘要]采用内酯型槐糖脂(SL50)修复石油污染土壤(含油土壤)。通过单因子实验与正交实验,考察了槐糖脂溶液质量浓度、振荡时间、反应体系初始pH、NaCl加入量以及固液比(土壤质量与表面活性剂溶液体积之比)对污染土壤石油烃洗脱率的影响。单因子模型回归分析结果表明,参数变量均符合二次拟合模型
摘要:本案例详细介绍了强化生物堆技术修复某石油类污染场地(含油土壤)的实施过程,污染场地面积为9300m2,修复土方量约4650m3。经过6个月的修复运行,最终验收检测结果表明污染区域内土壤总石油烃浓度均达到修复目标值。工程实施结果表明:对于石油类污染土壤(含油土壤),强化生物堆技术是一种较好
摘要:针对土壤环境恶化问题,首先分析了土壤修复中微生物技术的应用,然后对油污土壤(含油土壤)改良技术进行深入分析,为保证土壤改良效果,提供技术依据,实现不断提高土壤修复与改良技术水平的根本目标。关键词:土壤;油污土壤;微生物修复;土壤改良引言如今,在工农业生产快速发展的局势下,废
摘要:由输油管道破损泄露导致的土壤石油污染问题越来越引起人们的关注,本文针对管输油品泄露的土壤污染治理,首先介绍了常用的传统物化治理技术并进行其优缺点分析,着重对修复效果迅速,二次污染较小的化学修复技术中的表面活性剂淋洗技术和芬顿氧化降解技术的修复机理、研究进展、不足及发展展望进
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!