北极星

搜索历史清空

  • 水处理
您的位置:环保水处理工业废水市场正文

行业分领域综述:离子交换膜和电渗析技术的发展动向

2020-02-06 17:04来源:中国膜工业协会关键词:离子交换膜电渗析技术脱硫废水收藏点赞

投稿

我要投稿

双极膜是离子交换膜中的一种,应用领域专一,具有不可替代性。对于双极膜电渗析的应用,主要可分为污染控制/资源回收和化工生产。表9列出了双极膜电渗析技术在不同行业的应用实例。

表9.双极膜电渗析技术的应用实例

随着2015年国务院“水十条”法规的颁布,国家对高盐废水的处理提出更高的要求,实现废水“零排放”,以最大化的减少对环境的危害和实现资源的循环利用。双极膜电渗析可对电渗析回收的高浓缩盐水进行解离,实现产酸产碱,回用于生产过程,实现资源的充分利用。双极膜技术在国内的发展日益成熟,尽管目前国内所有电渗析厂家,都宣传有双极膜电渗析,但是其实国内双极膜电渗析应用主要以进口双极膜为主,只有为数不多的几家公司在研发、生产国产双极膜。其中杭州蓝然环境双极膜应用案例较多,双极膜规划年产能5万平方米。双极膜细分市场在整个膜市场中所占比重较小,但其应用领域专一,且具有难以替代性,在目前受到广泛关注的零排放和资源回收领域具有极大优势。基于双极膜的功能化特点,目前双极膜电渗析技术 在国内主要应用在以下几个方面:

1)无机盐制备酸和碱,如氯化钠、硫酸钠、硝酸钠等;

2)有机酸盐制备有机酸、碱,如苹果酸钠、蛋氨酸钠、EDTA、酒石酸钠、葡萄糖酸钠等;

3)有机碱盐制备有机碱、酸,如四乙基溴化铵、脱硫剂胺液、有机类盐酸盐产品等。

3.2.1 高盐废水处理

近二十年来,双极膜电渗析技术在水的脱盐淡化、制盐等领域增长率保持在15%左右。高盐废水难以生化降解,反渗透膜法通常只能浓缩到盐浓度5~8%,而采取热法蒸发成本较高。双极膜电渗析技术可以实现盐水的直接分解成酸碱实现资源化回用,变废为宝,投资成本仅仅为热法的30%,运行成本仅为热法的10%,是一种经济可行,易于操作维护,安全可靠的浓盐处理技术,对真正实现零排放有着重要意义。

3.2.2 有机酸回收与制备

传统有机酸生产方法是用发酵法,由于有机酸发酵过程中产生的有机酸使得发酵液pH值降低,阻碍了发酵过程的进行。因此往往会加入碱(石灰)中和沉淀,然后经硫酸酸化制得有机酸。这一生产工艺包括酸解、沉淀、过滤等过程,不仅需要消耗大量酸碱,而且过程复杂,形成大量废液、废渣污染环境。但若用双极膜电渗析水解离,作为H+和OH-的供应源,可直接从发酵液中生产有机酸,同时产生的碱回用于发酵调节pH,既节省了原料,又大大简化了工艺,避免了环境污染,已广泛应用于葡萄糖酸及氨基酸的生产和回收领域。

3.2.3 食品产业

双极膜电渗析由于具有能耗低,模式化设计和操作简便高效等特点,很多食品和医疗行业的产品,例如热敏性的物质,越来越倾向于采用这种技术。在电渗析装置的膜堆中,利用双极膜上pH值的变化,可用来处理食品工业生产中酶化、化学和微生物稳定性对pH值变化依赖性比较强的产品。所以和其他普通的分离方法相比,用双极膜电渗析在处理这一类物质时过程可以精确控制,具有特殊优势。双极膜电渗析技术在降低果汁酸度,提纯蛋白质,回收氨基酸,酱油脱盐等方面都有了一定程度的应用。

3.2.4 烟气脱硫

燃煤、燃油过程中排放大量的SO2是大气中的主要污染物之一,我国燃煤燃油过程每年向大气释放SOx约1900~2100万吨,传统的脱硫工艺如湿式石灰石-石膏法,需消耗大量的碱,脱硫后的副产品又无法利用,造成二次污染,而双极膜电渗析技术不仅无需投入碱性物质,而且还能把二氧化硫变废为宝,虽然前期投入与其它方式大体相当,但运营后的回收物硫酸能够在市场上出售或用于电厂内的离子交换树脂的再生,实现副产品“零排放”。双极膜法烟气脱硫是一个较新的领域,SO2吸收效率在98%以上,排放烟气中SO2浓度甚至可以达到零排放,远远优于国家排放标准。目前该工艺仍处于中试阶段,是双极膜技术的潜在应用领域。

3.2.5 稀土行业

稀土其实只是有色金属的一个子门类,属于一个小众行业。针对于稀土行业氯化铵、硫酸铵废水处理,在上述两类铵盐系统中,针对于硫酸铵废水,主要含硫酸铵、SS、氨氮、碳酸氢根、稀土、F-等杂质,工艺方向为零液体排放、盐资源化制备酸碱。可以用双极膜电渗析技术替代蒸发工艺,将高浓度硫酸铵废水直接转化为硫酸和氨水,实现资源化,酸碱可以回用于冶炼分离工艺段。

3.2.6 粘胶行业

为了解决粘胶企业含碱废水变固体物排放的历史重任,氢氧化钠与硫酸合成工艺开创了粘胶纤维副产元明粉的先河。生产粘胶纤维时产生的芒硝主要有两个来源:一是稀氢氧化钠会和凝固浴中硫酸反应生产的芒硝,二是配凝固浴时用的硫酸钠与水结合产生的芒硝。

粘胶行业是酸、碱消耗大户,双极膜电渗析产生的酸、碱可直接回用到前道工序中,可以降低运行成本并实现副产物芒硝的资源化利用,所以副产物硫酸钠的资源化利用具有非常高的可行性。目前粘胶行业的双极膜电渗析应用非常成熟,国内多家巨头粘胶企业均有对应的双极膜系统。采用双极膜电渗析技术资源化处理硫酸钠,国内已上系统产能预计100~200吨/日(以固体硫酸钠计),还远远小于该行业副产物元明粉产能,市场前景非常明朗。

3.2.7 双极膜在氯碱工业应用的对比

传统上利用水的电解来生成H+和OH-,电解的同时生成O2和H2,电解1mol水需要198.5kJ的能耗。而双极膜可用于将水直接解离成H+和OH-,同时不产生气体,分解1mol水仅需79.9kJ的能耗。因此双极膜电渗析技术是一种新型分解生成H+和OH-的方法,不仅能够节约能源,而且还能避免气体产生。

图12.氯碱工业(离子交换膜电解法)

离子膜电解除了具有传统电渗析的特点外,通过电极材料、膜材料的选择,尤其是采用了高效电催化电极后,可以在电解槽内发生一系列电化学过程。氯碱工业是最基本的化学工业之一,现主要采用离子交换膜法制烧碱。离子交换膜电解槽主要由阳极、阴极、离子交换膜、电解槽框和导电铜棒等组成(见图12),电解槽产生的阴极液为32%左右的液碱,液碱经蒸发、结晶可得烧碱;阴极区的另一产物氢气和阳极产物氯气又可生产盐酸。氯碱工业中每台电解槽由若干个单元槽串联或并联组成。考虑到氯气对环境的影响,其使用量在稳定的下降,在碱使用量维持不变的情况下,对碱的需求超过了对氯气的需求。

从2010年5月起,国产氯碱离子膜已在万吨工业装置上成功应用。2017年全球氯碱离子交换膜市场规模达到455.71百万美元,QYResearch预计在2024年达到526.55百万美元,2017至2024年增长率为2.09%。《中国制造2025》重点领域技术路线图中要求离子交换膜产品膜性能提高20%,氯碱工业应用超过1000万吨规模,突破全膜法氯碱生产新技术和成套装置。对于烧碱的生产,双极膜电渗析是一个未来可以代替传统膜电解的方法。以纯氯化钠系统为例,氯化钠双极膜电渗析所产NaOH的浓度一般控制在40~150g/L,所产盐酸浓度约为35~110g/L,两种工艺具体差异见表10。

表10.双极膜电渗析、电解法工艺对比分析表

双极膜电渗析起步及工业化相对较晚,但其进水盐浓度要求低且适用范围广,更适用于目前“零排放”系统。双极膜工艺气体产量大幅度降低,操作电流密度低,安全稳定性高,且双极膜电渗析采用模块化设计,增量/减量操作简单,系统出料口酸、碱浓度可调,运行无其他副产品,无需增加副产品生产线。

尽管氯碱工业电解的同时产生气体,并伴随过电压消耗约一半的电能,但迄今为止双极膜还无法取代氯碱工业,主要原因是:①系统出水是稀酸、稀碱。如果酸碱回用浓度超过4N,则需要采用蒸发的方式处理,双极膜系统经济性降低;②系统一次性投资较高。一方面目前因为膜材料为进口;另一方面由于双极膜的功能化作用,膜生产成本高;③膜的运行成本较高。双极膜就目前国内使用情况而言,平均使用寿命仅2~3年。

3.2.8 双极膜的性能对比

目前国内所需的绝大多数双极膜仍依赖于进口(主要从日本ASTOM公司和德国Fumatech公司),由于我国的双极膜膜制造技术无法满足日益增长的工业需求,严重阻碍了双极膜电渗析的工程应用,所以有必要加强研究、引进、消化与改造相结合,采用新材料、新工艺、新设备和新技术来开发新产品,提高膜性能,降低膜制造成本,以摆脱国外公司的技术控制。表11中列出了双极膜厂家不同双极膜的性能对照。

表11.不同厂家双极膜性能对比

从表中可看出,杭州蓝然环境双极膜在产碱方面相对于其他厂家有较大的优势,且单位处理量较高而单位处理能耗低。其中,测试条件为:① 设备为杭州蓝然环境自主开发的EX-3BT电渗析小试实验装置;② 物料为1L 10%的硫酸钠溶液,初始酸、碱室均为纯水;③ 运行温度为30~40℃、运行时间为60min;④ 额定电压、电流均设定为35V、4.4A。

杭州蓝然环境在国内双极膜的应用案例较多、占比非常高,杭州蓝然环境投资约1.5亿元,双极膜规划年产能50000平方米,2020年初投产可在保证双极膜质量的同时有效降低双极膜的成本,使双极膜电渗析技术越来越多的在清洁生产和资源回收方面发挥重要作用,从而实现人类社会的可持续发展。

3.2.9 电渗析在各行业的市场容量

表12.部分行业电渗析市场容量预估

4 未来电渗析发展的扩展性

4.1 工业酸碱性废气的吸收

双极膜电渗析产生的碱液可用于回收工业废气中CO2和SO2等酸性气体,产生的酸液可用于回收工业废气中的碱性气体,如NH3,在避免废气产生环境污染的同时实现了资源的循环利用。

4.2 二氧化碳捕捉剂再生

CO2大量排放造成了恶劣的环境问题,碳捕捉与贮存技术是缓解温室效应的一个重要手段。双极膜电渗析可解离水分子制取酸碱,有望替代传统的CO2捕捉剂的热再生过程。氨基酸盐是一种新型的CO2的捕捉剂,在生产过程中会产生对应的氨基酸盐中间体,比如蛋氨酸盐,其用于捕捉CO2后会转化为中性氨基酸以及碳酸盐、碳酸氢盐的混合溶液,之后利用双极膜电渗析实现CO2分离以及蛋氨酸的脱盐,高效生产的过程中实现了绿色环保。

4.3 反向电渗析

反向电渗析(RED)也称作“渗析电池”,是一种新兴的可持续发展清洁能源技术,它可以从两个不同盐度梯度的溶液中提取能量,且过程中没有任何二次污染。目前全球的盐差势能巨大,利用电渗析装置,化学势差推动离子穿过离子交换膜由浓溶液向稀溶液迁移,电子可以通过一个外部电路从阳极被转移到阴极。当外部负载或能源消耗产品连接到电路时,这种电流和两电极上的电势差可用于产生电。

原标题:行业分领域综述:离子交换膜和电渗析技术的发展动向
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

离子交换膜查看更多>电渗析技术查看更多>脱硫废水查看更多>