登录注册
请使用微信扫一扫
关注公众号完成登录
EGSB反应器装置由有机玻璃制成,有效容积为25 L。顶部安装玻璃钢材质气液固三相分离器,内部安装pH探头以实时检测系统pH变化。反应器外壁缠绕电阻丝进行电加热,并与温度探头连锁自动控制反应温度为(35±1) ℃。当预处理后的接种污泥投
加进EGSB反应器后,废水由可调速蠕动泵输送进反应器内,稀释进水COD,控制启动容积负荷为1.0 kgCOD/(m3·d)(HRT 为48 h),在反应器启动运行过程中,逐步升高容积负荷直至满负荷运行〔7.9kgCOD/(m3·d)〕。当反应器启动成功后,依次降低系统HRT分别为40、32 h〔对应的容积负荷分别为9.5、11.8 kgCOD/(m3·d)〕,以确定最适的容积负荷。反应器部分出水通过计量泵回流至进水。
4 检测方法
反应器产生的生物气量采用LMH-1型湿式气体流量计(山东桑泽仪器)进行测定。甲烷体积分数采用7890B型气相色谱(美国安捷伦)进行测定。
COD、BOD5、TS、VS、NH4+-N、TP、碱度和色度采用国家标准方法进行分析。污泥粒径采用湿式筛分法进行测定,菌群种类分析采用文献中所述的离心洗涤、试剂提取、凝胶电泳及基因扩增方法进行测定。
02 结果与讨论
1 EGSB反应器运行性能
考察整个实验期间(200 d)EGSB反应器的连续运行性能,结果见图2。
由图2可知,在EGSB反应器启动过程中,通过提高进水COD使容积负荷由1.0 kgCOD/(m3·d)逐步提高直至7.9 kgCOD/(m3·d)(满负荷)运行。
在每一个容积负荷条件下运行,当COD去除率达到80%时,依次提高容积负荷至2.0、2.9、3.9、4.9、5.8、6.9、7.9 kgCOD/(m3·d)。整个启动过程持续了约90 d,启动成功后的EGSB反应器在22 d的运行时间内性能稳定,COD平均去除率稳定在91.6%±1.8%,出水平均COD为(1 320±15) mg/L。
另外,在EGSB反应器启动过程中,每次提高容积负荷时,系统的COD平均去除率均呈先下降后升高的趋势,这是因为反应器内厌氧微生物对新的运行条件需要有一定的适应期。
在反应器运行的第102 d,降低系统HRT至40 h以提高容积负荷至9.5 kgCOD/(m3·d),经过20 d的运行发现系统的COD去除率几乎没有变化,COD平均去除率为91.4%±0.8%。当系统HRT进一步降低至32 h时〔此时容积负荷为11.8 kgCOD/(m3·d)〕,COD平均去除率下降至83.5%±1.2%,出水平均COD升高至(2 558±97) mg/L。
同时,在EGSB出水中发现颗粒污泥的存在,这是因为在HRT为32 h下过快的上升流速导致部分污泥流失,从而使厌氧微生物数量减少,系统处理效率下降。将系统HRT再次升高至40 h,经过20 d的运行,系统运行性能恢复至原水平,COD平均去除率升高至91.7%±1.1%。
这表明,本研究EGSB反应器在HRT为40 h〔容积负荷9.5kgCOD/(m3·d)〕的条件下运行更具优势,既能实现高COD去除能力又能减小反应器的容积负荷。
在反应器运行的1~157 d内,EGSB反应器内的pH稳定在6.9~7.6,此pH范围有利于厌氧产甲烷菌群的增殖代谢。为考察反应器运行的稳定性及抗冲击能力,在运行的第158 d,在进水中投加一定量浓度31%的盐酸将pH降低至5.6,低于厌氧微生物的最适pH范围(6.5~8.5),考察EGSB反应器的运行效果。
结果表明,当进水pH降低后,EGSB反应器的COD平均去除率立即大幅度降低,从而导致出水COD上升。COD平均去除率下降至74.8%±1.9%,较pH调节前降低了18.4%,出水COD升高至(3 973±102) mg/L。
随着时间的运行,厌氧微生物逐渐适应了低pH环境,对COD的去除率逐渐升高,并达到稳定状态。EGSB反应器经过25 d的连续运行,COD平均去除率恢复至83.4%±1.3%,低于pH调整前的COD平均去除率(91.7%±1.1%),这表明低pH环境对反应器内的产甲烷菌群产生了一定程度不可逆的负面影响。
因此,维持系统pH在厌氧微生物的最适范围内,对EGSB反应器的高效稳定运行至关重要。
2 EGSB反应器的产甲烷性能
EGSB反应器在运行期间的甲烷产率及甲烷体积分数变化见图3。
由图3可知,EGSB在启动过程中,随着容积负荷的逐步升高,甲烷产率逐渐升高。当系统满负荷运行时,甲烷平均产率为(2.33±0.04) L/(L·d)。当降低系统HRT至40 h时,甲烷产率升高至(2.56±0.05) L/(L·d),随着HRT进一步降低至32 h,甲烷产率继续升高至(2.82±0.04) L/(L·d)。
尽管在HRT为32 h时,系统COD平均去除率较低,为83.5%±1.2%,但其进水的有机物总量较高,最终去除的有机物总量均高于HRT为48 h和40 h的运行条件,因此,系统会产生更多的甲烷。
但综合考虑COD去除效率,系统HRT 为32 h不适合EGSB反应器的长期运行。当系统受到低pH冲击后,COD去除率大幅度下降,甲烷产率同样大幅度下降至(2.04±0.04) L/(L·d),较pH调整前降低了27.7%,低pH对产甲烷菌群的负面影响导致了甲烷产量的下降。
随着厌氧微生物逐渐适应新的代谢环境,代谢性能逐渐增强并稳定,从而甲烷产率逐渐升高,最终稳定在(2.26±0.07) L/(L·d)左右,低于pH调整前的甲烷产率。
在整个运行过程中,EGSB反应器产生的生物气中甲烷体积分数较为稳定,在57.3%~72.2%之间变化,甲烷体积分数受容积负荷及pH冲击的影响较小。除甲烷外,生物气中还存在一定量的CO2和少量H2等。
3 EGSB反应器颗粒污泥的形成
要保证厌氧反应器高效、稳定的运行,颗粒污泥的形成是至关重要的。与絮状污泥相比,颗粒污泥具有更好的沉降性及微生物密度,从而可提高系统的抗外界因素(如负荷、pH及有毒元素等)干扰能力。在以前的研究中,颗粒污泥定义为粒径≥0.5 mm的污泥。考察EGSB反应器在启动过程中的不同粒径污泥的占比变化情况,结果见图4。
由图4可知,生污泥中基本为絮状污泥,其中粒径≥0.5 mm的污泥仅占比18.3%,颗粒状污泥很少,SV30为(33.1±0.4),沉降性较差。随着反应器启动运行,颗粒状污泥的比例逐渐升高,且颗粒污泥直径逐渐增大。
当反应器运行至第30 d时,系统开始出现粒径≥2 mm的颗粒污泥,且颗粒污泥的比例由生污泥的13.7%升高至55.2%,这表明颗粒污泥驯化正在进行。
在运行的第60 d时,颗粒污泥继续增多,占比提高至75.7%,其中粒径≥1 mm和粒径≥2 mm的颗粒污泥可分别占到18.4%和7.7%。
反应器启动成功后(第90 d),颗粒污泥占比可达到80.7%,为生污泥的6倍,这也是反应器在满负荷运行条件下具有较高COD去除率及甲烷产率的原因。
EGSB反应器启动成功后,污泥粒径在0.5~0.7 mm、0.7~1.0 mm、1.0~2.0 mm、≥2 mm的占比分别为36.5%、21.4%、12.6%、9.7%。
同时,经检测颗粒污泥的SV30为21.3±0.4,低于生污泥,这表明颗粒污泥具有更高的沉降性能。另颗粒污泥的VS高达(39.1±1.5) g/L,远高于生污泥的(7.2±1.0) g/L,说明颗粒污泥具有更高的生物量。
4 厌氧微生物群落结构分析
对EGSB反应器在运行第90 d和第200 d进行取样并分析微生物群落结构和相对丰富度,分析结果见图5。
在厌氧生物处理过程中,微生物基本分为产酸菌群和产甲烷菌群两大类。产酸菌群主要负责将水中的有机化合物通过水解酸化的作用转化为挥发性有机酸及少量的醇类,在本研究中,EGSB反应器出水中的主要挥发性有机酸为乙酸和丁酸。
由图5可知,在EGSB启动成功并稳定运行后(第90 d),主要的优势产酸菌群为Geobacter,其相对丰富度为20.1%±2.2%,该菌群的主要代谢产物为乙酸和丁酸。
Methanomassiliicoccus菌群为优势产甲烷菌群,在产甲烷过程中起主要作用,其相对丰富度为31.2%±1.8%。Methanomassiliicoccus菌群是中温厌氧生物处理过程常见的菌群之一,主要作用为将产酸菌群产生的挥发性有机酸进一步转化为甲烷和二氧化碳等。
本研究优势菌群结构与C. M. Chen等的研究结果一致,其曾构建UASB来处理煤气化废水并对厌氧微生物群落结构进行分析,发现优势菌群为Geobacter和Methanomassiliicoccus,厌氧生物处理过程主要由以上2种菌群完成。当系统受低pH冲击并稳定运行后(200 d),各微生物群落结构没有明显变化,但相对丰富度均有不同程度的变化。
优势产甲烷菌群Methanomassilii-coccus的相对丰富度由31.2%±1.8%下降至18.7%±1.6%,该菌群受低pH影响明显,这也是系统COD去除率下降的主要原因。
相反的,Methanothrix菌群相对丰富度却由90 d的4.8%±0.2%升高至10.5%±0.5%,这表明该产甲烷菌群对pH变化具有优良的耐受能力,对低pH条件下的稳定运行发挥着重要的作用。
以前的研究证明,Methanothrix菌群能够在较低pH下进行新陈代谢,且代谢性能良好。除此之外,其余产甲烷菌群的相对丰富度均有不同程度的降低。
经低pH冲击后,优势产酸菌群Geobacter的相对丰富度由20.1%±2.2%升高至28.9%±1.1%,这与产酸菌群适宜于低pH条件下的代谢环境有关。产酸菌群的代谢产物主要为挥发性有机酸,会使代谢环境呈酸性,这决定了其耐低pH冲击的特性。
03 结论
(1)EGSB反应器处理高浓度抗生素制药废水具有一定可行性,在最适容积负荷为9.5 kgCOD/(m3·d)(HRT 40 h)的条件下,COD平均去除率可达91.4%±0.8%,甲烷产率为(2.56±0.05) L/(L·d)。
(2)尽管pH变化对EGSB反应器的稳定运行有较大的影响,但仍具有一定的抗低pH冲击能力。受低pH冲击后,EGSB反应器经过一定的适应期后COD去除率仍可达到83.4%±1.3%。
(3)EGSB反应器内的优势菌群为Geobacter和Methanomassiliicoccus。受低pH冲击后,优势菌群结构未发生变化,但Geobacter菌群相对丰富度升高而Methanomassiliicoccus菌群的相对丰富度降低。这说明低pH对产甲烷菌群具有一定的负面影响。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
7月9日,由中广核核技术发展股份有限公司(简称“中广核技”)下属中广核达胜加速器技术有限公司(简称“中广核达胜”)与清华大学核能与新能源技术研究院(简称“清华大学核研院”)联合研发的“电离辐射技术处理抗生素废水及菌渣”科学技术成果通过专家鉴定。据悉,该项成果为国内首创,为无害化处理
7月9日,由中广核核技术发展股份有限公司(简称“中广核技”)下属中广核达胜加速器技术有限公司(简称“中广核达胜”)与清华大学核能与新能源技术研究院(简称“清华大学核研院”)联合研发的“电离辐射技术处理抗生素废水及菌渣”科学技术成果通过专家鉴定。据悉,该项成果为国内首创,为无害化处理
中国是抗生素生产与使用大国,近年来抗生素排入环境引发的问题逐渐得到重视。长时间低剂量的抗生素环境暴露会加速和诱导抗生素抗性基因(ARG)的产生。而ARG是抗性菌(ARB)产生耐药性的根本原因,即使ARB死亡,在脱氧核苷酸酶的保护下,携带ARG的裸露DNA仍会长期存在,进而威胁生态环境和人类健康安全
BOD(生化需氧量):是指在有氧的条件下,水中微生物分解有机物的生物化学过程中所需溶解氧的质量浓度。为了使BOD检测数值有可比性,一般规定一个时间周期,并测定水中溶解氧消耗情况,一般采用五天时间,称为五日生化需氧量,记做BOD5,经常使用五日生化需氧量。BOD数值越大证明水中含有的有机物越多,因此污染也越严重。
在污水处理工程中,为了使处理后的水,实现达标排放,在污水处理的每个环节都会用水质监测设备检测水质,根据水质监测设备测得的数据,采用相应的处理方法,使本环节水质指标达到要求,再进入下一个处理环节。在这些水质监测指标中,最重要的两个指标就是BOD和COD。什么是BOD与COD?BOD(生化需氧量):
什么是BOD?生化需氧量又称生化耗氧量(Biochemicaloxygendemand,简写为BOD),是水体中的好氧微生物在一定温度下将水中有机物分解成无机质,这一特定时间内的氧化过程中所需要的溶解氧量,是表示水中有机物等需氧污染物质含量的一个综合指标。生化需氧量是重要的水质污染参数。废水、废水处理厂出水
近日,由中国科学院生态环境研究中心杨敏研究员团队研发的针对发酵类抗生素生产废水的强化水解预处理技术,在河北圣雪大成制药有限责任公司废水处理系统工程改造中得到成功应用,解决了发酵类抗生素废水经济、高效、稳定达标排放的难题。抗生素生产行业是石家庄市医药产业的重要组成部分,但是抗生素生
随着近年来针对于节能、环保的高压政策下,很多重污染的制药等企业需要对污染物进行必要处理,只有达标后才能排放。根据相关了解,实际上制药废水存在成分复杂、有机物污染物种类比较多、浓度高,并且含有难生物降解和毒性物质等特征,是比较难处理的工业废水之一。因此现今怎样处理制药废水并使其达标
化学药品原料药制造是污染负荷量最大的制药子行业,约占全行业的80%。而废水又是污染物负荷量的最大贡献者,因此,化学原料药生产产生的废水污染问题急需得到重视。据了解,化学原料药的废水来源包括车间工艺用水、设备管线清场清洗废水、药物提取或精制工序固液分离产生的废水等。原料药废水中溶入了
2019年12月5日,“2019中国工业水处理高峰论坛”在北京成功举办。11位来自政府机构、设计院、石化、制药、钢铁、煤化工标杆性终端及知名企业的重量级嘉宾莅临现场,为参会代表们带来视野前瞻,干货满满的主题演讲。现场汇聚了来自设计院、有水处理需求的各个终端及解决方案供应商,共100人齐聚一堂,共
各有关单位:党的二十届三中全会强调:加快经济社会发展全面绿色转型,健全生态环境治理体系和绿色低碳发展机制。推动工业废水处理技术减污降碳、协同增效,对实现生态优先、绿色低碳发展目标有其重要意义。为落实党中央最新部署,响应生态环境部建立新污染物协同治理、多污染物协同减排的有关意见,中
近日,朝阳环境高安屯厨余垃圾处理厂项目胜利完工,正在进行设备调试,今年上半年将正式投入使用。项目投运后,每天可专业化处理800吨厨余垃圾,将有效推动社会减污降碳协同增效。北京高安屯厨余垃圾处理厂位于朝阳循环经济产业园内,占地60亩,总建筑面积1.5万平方米,是北京市目前规模最大的厨余垃圾
当我们将吃剩的饭菜、剥下的果皮等厨余垃圾扔进垃圾桶后,你是否好奇过它们的最终归宿?这些看似无用的废弃物,其实有着一段奇妙的旅程。今天,就让我们以“云”参观的方式,走进北京高安屯厨余垃圾处理厂,一同揭开厨余垃圾处理的神秘面纱。处理厂初印象北京高安屯厨余垃圾处理厂,坐落于朝阳循环经济
近日,天源环保接待机构调研时表示,公司目前在手销售合同规模约为170亿元。目前公司污水处理运营业务、高浓度有机废水、垃圾发电、污泥处置等合计运营收入约4亿元,利润率在30%以上。随着公司在建项目陆续投产,预计运营收入在明年将会有大幅增长。公司环保装备业务将拓展至海外出口,重点区域为中亚
2024年11月7日,根据北交所审核项目动态,北京国环莱茵环保科技股份有限公司(简称“国环科技”)IPO审核状态为“终止”北交所于2023年12月29日受理了国环科技提交的公开发行相关申请文件,并按照规定进行了审核。国环科技原拟募集资金25,000.00万元,用于研发中心建设项目、营销与服务网络建设项目、
各有关单位:随着社会对水环境质量要求的不断提高,以及更为严格的各地方标准的陆续出台,老旧污水处理厂的提价、提标改造和建制镇的污水处理设施新建将成为新的增长点;工业废水处理也是我国环保产业的重要分支,也是实现碳中和的重要路径之一,未来随着各地工业园区建设的推进,以及政策的引导,工业
2024第五届新疆国际节能环保博览会;第三届新疆城镇供排水新产品、新技术、新设备博览会;新疆国际新工业博览会于7月11日开幕为更好的贯彻落实国务院《推动大规模设备更新和消费品以旧换新行动方案》和《“十四五”节能减排综合工作方案》战略规划,2024第五届新疆国际节能环保博览会;第三届新疆城镇供排
党的二十大报告提出,协同推进降碳、减污、扩绿、增长和提升环境基础设施建设水平。近日,国家发展改革委、住房城乡建设部、生态环境部联合印发《关于推进污水处理减污降碳协同增效的实施意见》(发改环资〔2023〕1714号,以下简称《实施意见》),提出协同推动污水处理减污降碳的目标任务、关键路径、
中环环保公布2023年半年度报告,报告期营业收入4.12亿元,同比下降30.32%;归属于上市公司股东的净利润7726.93万元,同比下降21.46%;归属于上市公司股东的扣除非经常性损益的净利润6115.87万元,同比下降35.84%;基本每股收益0.1823元。报告期内,公司的主要业务如下:1、水环境治理业务(1)市政污水
【社区案例】想请问一下就是污泥指数怎么计算呢?例如SV为92%,MISS为9890,SVI为多少呢?谢谢!污泥指数(SVI)作为污泥膨胀的判断依据之一,有很好的指导意义,所以,SVI的计算的正确性尤为重要!想了解污泥指数(SVI)的意义,我们需要先从定义说起!一、污泥指数(SVI)的定义与计算污泥指数又称
离离草原,一碧千里。党的二十大对推动绿色发展、促进人与自然和谐共生作出重大战略部署,自治区党委十一届四次全会明确了加强我国北方重要生态安全屏障建设的目标任务。达泽环保作为新时代科技节能环保企业将聚焦筑牢我国北方重要生态安全屏障,主动担当作为,忠诚履职尽责,勇于攻坚克难。近期达泽环
自古美酒出贵州,贵州安酒集团为中国首家白酒集团——1988年3月8日贵州安酒集团总公司成立,集团总厂位于贵州省安顺市西郊果木场一号,占地面积约15万平方米,具有历史悠久的老窖池千余口及近万吨的酒库,包装生产线年产量可达到2万吨,白酒检测研发实力均列行业领先地位。贵州安酒集团处于被誉为酿酒
随着我国经济的快速发展和城市化进程的加快,国家统计局在全国统计年鉴(2020)发布报道,2019年全国垃圾无害化处理量为869875吨/日,其中卫生填埋和焚烧各占比42.2%和52.5%。垃圾焚烧发电技术由于能够快速实现垃圾减量化、资源化和无害化,已超过填埋法成为我国主要的垃圾无害化处理方式。垃圾焚烧前需堆酵5~7天,以使垃圾熟化并沥出水分,从而提高垃圾的热值和燃烧稳定性,垃圾中原有的水分、垃圾发酵产生水分及外来水分(降雨)共同形成了垃圾焚烧厂渗沥液。这种垃圾焚烧厂渗沥液是一种高氨氮高有机物废水,其水质成分复杂,含有多种有毒有害有机物和金属离子;渗沥液中
前段时间,随着“碳中和”、“光伏”等热词的出现,带起了一股节能减排的潮流。水处理行业自然也是响应国家号召,不断尝试新模式、新工艺。
们先白话一下低能耗技术之一的好氧颗粒污泥技术(AGS)。
废水厌氧生物处理技术投资省、能耗低、可回收利用沼气能源、产泥少、耐冲击负荷。针对不同的厌氧处理技术,指出了各种厌氧技术的工作原理,介绍了厌氧技术在化工废水处理中的应用,并展望了厌氧技术工艺今后的研究方向。厌氧技术是一种低成本的废水处理技术,它将废水的处理和能源的回收利用相结合,在
一、厌氧生物处理的基本原理厌氧生物处理,就是利用厌氧微生物的代谢特性,将废水中有机物进行还原,同时产生甲烷气体的一种经济而有效的处理技术。废水厌氧生物处理技术(厌氧消化),就是在在无分子氧条件下,通过厌氧微生物的作用,将废水中的各种复杂有机物分解转化成甲烷和二氧化碳等。厌氧与好氧过
厌氧处理技术是实现有机物能源化和生物强化技术创新研究的重点。在2020(第二届)中国城市水环境与水生态发展大会上,中国科学技术大学俞汉青教授作了《厌氧处理技术:困境和出路》的报告,系统介绍了厌氧处理的发展历史,实用性厌氧技术的进展及近年来在厌氧领域的研究探索,并分享了他对厌氧处理技术
摘要:江西某油脂有限公司的生产废水和冲洗废水采用混凝气浮/UASB/生物接触氧化/混凝沉淀组合工艺处理。采用隔油+混凝气浮进行预处理,油脂去除率高且稳定;以UASB和生物接触氧化为主体工艺,污泥浓度高,处理效果好。稳定运行后,出水COD为89mg/L,BOD5为19mg/L,SS为69mg/L,动植物油为10mg/L,均达到
【摘要】近年来,随着食品加工业的快速发展,每年由此产生的废水量也呈现快速增长态势,许多废水未经有效处理便被直接排放,给环境产生了十分严重的破坏。本文以好氧生物处理工艺和厌氧生物处理工艺中较为典型的几种处理方式为例,探讨了食品工业废水处理,并就接下来的发展作出了展望,厌氧生物处理工
厌氧生物反应器处理废水因具有能耗低、不易产生二次污染、可循环利用沼气能源等优点而被广泛使用。厌氧生物反应器内构件的改造设计与内部流态特性的变化有重要联系。通过增设内构件可获取合适的流态特性,从而避免较长的反应时间并提高出水水质,实现反应器节能降耗,提高处理能力。工程上常将流态特性
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!