登录注册
请使用微信扫一扫
关注公众号完成登录
好氧生物滤池(BAF)是一种典型的生物膜工艺,其具有占地面积小、处理水量大以及抗冲击负荷能力强等优势。气水比是调控好氧生物滤池的基本运行参数之一。因此,本文探究了不同气水比下BAF中N2O的释放量变化,并解析了N2O生成途径,为BAF工艺在城市污水处理中的优化运行提供理论参考。
主要研究内容
在实验室内构建了两个有效容积为18.4 L的BAF(图2),其中BAF1主要发生硝化反硝化反应,BAF2主要发生硝化厌氧氨氧化(Anammox)反应。两个系统串联处理实际生活污水,调控不同的气水比长期运行。每天监测两个系统的进出水水质,定期测定气态N2O和滤池沿程不同高度出水的溶解态N2O浓度变化。设置不同底物和不同溶解氧浓度条件下的间歇试验,采用稳定比同位素、NO和N2O微电极在线监测与实时荧光定量PCR技术,开展了以下三方面内容的探究:
(1) 揭示气水比对不同BAF中N2O释放量的影响;
(2) 解析两个不同BAF中N2O的生成途径;
(3) 比较不同BAF中N2O释放量的差异。
重点亮点简介
3.1 不同气水比条件下BAF的脱氮效果
控制BAF1的气水比分别为10:1、5:1和2.5:1,BAF2的气水比分别为5:1和1.5:1。图3表明对于BAF1,在气水比为10:1和5:1时,氨氮去除率(ARE)均达到53.0%,而在气水比为2.5:1时仅有19.4%。在气水比为5:1时,总无机氮去除率(TINRE)最高,达到35.7%。对于BAF2,两个气水比下ARE均达到90%以上,而在气水比为1.5:1时,TINRE较高,达到23.2%。
3.2 气水比对BAF中气态N2O释放量的影响
通过长期监测发现,BAF1和BAF2中气态N2O释放量均随气水比的降低而下降。在BAF1中,气水比为10:1时,气态N2O浓度达到32.1~45.7 ppm,在气水比为10:1和5:1时ARE相近,气水比为5:1时TINRE较高,但是在气水比为10:1时,N2O/ΔNH4+-N和N2O/ΔTIN 却最高,说明气水比会影响系统的反应活性和N2O释放途径。在BAF2中,气水比从5:1下降至1.5:1,N2O/ΔNH4+-N从1.22%下降至0.35%,N2O/ΔTIN从4.78%下降至1.16%,且几乎无反硝化作用发生,说明气水比影响硝化细菌的反硝化作用和羟胺氧化作用从而影响N2O释放。
3.3 N2O释放途径分析
间歇试验结果如图5所示,在BAF1中羟胺氧化过程和好氧氨氧化过程会释放大量的N2O,稳定比同位素结果也验证了这两条产生途径(表1)。间歇试验(d)和(e)均有N2O的释放,且间歇试验(e)测定的N2O sp值为-0.604,说明异养反硝化作用也会生成N2O。此外,间歇试验(d)和(e)中的N2O变化趋势显示,当N2O累积至一定浓度时会被还原,说明在BAF1中异养反硝化作用也能够还原N2O。虽然在不同间歇试验中,反应的初始氮素浓度存在差异,但是通过计算间歇试验反应至120 min时的ΔN2O/ΔN发现(表2),间歇试验(b)的ΔN2O/ΔN值高于间歇试验(d)、(e)和(g),说明硝化细菌的反硝化作用会比异养反硝化作用释放更多的N2O。另外,通过比较间歇试验(b)和(f)中溶解态N2O浓度的变化趋势发现,即使在好氧条件下异养反硝化作用也会产生N2O。所以,BAF1中N2O来源于硝化细菌的反硝化作用,羟胺氧化作用以及异养反硝化作用。
在BAF2中,间歇试验结果显示N2O来源于硝化细菌的反硝化作用和羟胺氧化作用,在好氧条件下几乎不发生异养反硝化作用。对BAF2中生成的气态产物直接进行N2O稳定比同位素分析表明(表1),在气水比为5:1时,53.7%的N2O来源于硝化细菌的反硝化作用,46.3%的N2O来源于羟胺氧化作用,而当气水比下降至1.5:1时,羟胺氧化作用释放的N2O的比例下降至12.2%,说明气水比会影响BAF2中N2O的生成途径。但是,气水比为1.5:1时N2O的生成浓度仅为气水比为5:1时N2O生成浓度的50%,说明在气水比下降时源于硝化细菌反硝化作用的N2O生成量也有所下降。
前期有报道发现,较高的好氧氨氧化速率会诱导较高的N2O产生速率,此外,在BAF2中,提高曝气量会促进NH4+-N向生物膜内部扩散,而生物膜内部的低DO环境亦会促进硝化细菌的反硝化作用产生N2O。所以,在BAF2中高气水比下N2O释放量较高。对氮素转化功能基因进行定量发现(图6),在BAF2中气水比为1.5:1时,参与Anammox反应的功能基因hzsB的丰度明显上升,单位质量生物膜中基因拷贝数超过107,说明低气水比有利于提高Anammox反应活性,提高系统的自养脱氮能力,而厌氧氨氧化菌与好氧氨氧化菌对NH4+-N的竞争也会削弱硝化细菌的反硝化作用,降低N2O排放。所以,通过强化BAF中的Anammox作用既可以提高脱氮效果,又可以实现N2O减排。
3.4 不同BAF中N2O释放的比较
在气水比均为5:1时,BAF1和BAF2中的氨氮去除量相近,但是BAF2中气态N2O释放量更高,说明在BAF2中,高DO浓度导致好氧氨氧化速率更高,N2O释放量更高,而在BAF1中,异养反硝化作用会还原N2O,导致系统N2O释放量下降。对于溶解态N2O,在BAF1的整个滤层中都存在硝化反应,并伴随着N2O的产生。BAF1的出水是BAF2的进水,在BAF2中反应主要发生在滤层下部40 cm范围内,生成大量的N2O,所以BAF2下部的溶解态N2O浓度高于BAF1。而在曝气吹脱作用下,在滤池上部的部分溶解态N2O会转变为气态N2O,最终导致BAF2出水中溶解态N2O浓度低于BAF1。
结论
1、在硝化反硝化生物滤池和好氧自养脱氮生物滤池处理生活污水时,N2O释放量均随气水比的升高而上升。
2、在BAF1中,N2O产生于硝化细菌的反硝化作用、羟胺氧化作用和异养反硝化作用,气水比为5:1有利于系统脱氮和N2O减排。
3、在BAF2中,N2O产生于硝化细菌的反硝化作用和羟胺氧化作用,在气水比为1.5:1时,87.8%的N2O来源于硝化细菌的反硝化作用。
4、硝化细菌的反硝化作用比异养反硝化作用更容易诱导N2O的释放,导致在相同气水比下BAF2中N2O释放量高于BAF1.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
根据《中央生态环境保护督察整改工作办法》和广东省生态环境保护督察办公室有关要求,现将2024年我市贯彻落实第二轮中央生态环境保护督察整改情况进行公开:一、总体工作情况2024年以来,市委、市政府多次召开市委常委会、市委书记专题会、市政府常务会议深入学习贯彻习近平生态文明思想,研究部署生态
近日,北京市水务局公示2024年1-12月城镇重要大中型污水处理设施运行情况。共49家,设计处理能力645.2万立方米/日,2024年1-12月实际处理量为207784万立方米。2024年1-12月城镇重要大中型污水处理设施运行情况
日前,青海公示全省城镇生活污水处理厂名录,共74家,详情如下:
近日,山东省正式发布《山东省城镇污水处理厂水污染物排放标准》,排放标准分为A标准、B标准、C标准、D标准。其中A标准要求除总氮(TN)外,常规指标(COD、氨氮、总磷)均达到地表水Ⅳ类标准,即COD≤30mg/L、氨氮≤1.5mg/L、总磷≤0.3mg/L,而TN限值为10mg/L。此外,该标准还引入瞬时排放限值。具体
2月13日,贵州紫云自治县城镇生活污水处理设施更新改造提升工程施工、设计(EPC)招标公告发布。该项目对10座污水处理厂进行设备更新改造,设计处理总规模4140m3/d,更新改造10座污水处理厂污水收集管网66.75公里及厂区内部场地硬化等附属设施,购置更换回流泵、提升泵、罗茨风机及反洗泵等等污水处理
自贡市第三轮省级生态环境保护督察第二十四项整改任务已整改完成,并通过验收,拟按程序实施销号。根据《自贡市生态环境保护督察问题整改销号办法(修订)》(自督整改办〔2022〕2号)有关要求,现将该项问题整改验收情况予以公示,公示期为2025年2月6日至2月18日。公示期间如有异议,请实名书面向自贡
1月22日,云南省金平县城镇污水处理厂及配套管网建设工程设计施工总承包及运营(EPC+O)中标结果公告发布。中交一公局西北工程有限公司//云南建投第二建设有限公司//吉林省华天环保集团有限公司联合体中标。据悉,该项目主要建设4座污水处理厂以及配套管网建设,包括金平县污水处理厂扩建;金水河镇污
近日,河南省生态环境厅发布《河南省工业园区工业废水依托城镇污水处理厂处理评估工作指南(试行)》(征求意见稿)。详情如下:河南省生态环境厅关于《河南省工业园区工业废水依托城镇污水处理厂处理评估工作指南(试行)》公开征求意见的公告为规范工业园区工业废水排放管理,补短板、强弱项、防风险
1月14日,云南金平县城镇污水处理厂及配套管网建设工程设计施工总承包及运营(EPC+O)中标候选人公示。第一中标候选人:牵头单位:中交一公局西北工程有限公司,联合体单位:云南建投第二建设有限公司、吉林省华天环保集团有限公司;第二中标候选人:牵头单位:中铁二十四局集团南昌铁路工程有限公司,
1月10日,江西抚州临川区城镇污水处理厂及配套管网二期建设项目EPC总承包中标结果公示。抚州市临川区城投建筑工程有限公司中标,中标价249862203.35元。临川区城镇污水处理厂及配套管网二期建设项目主要建设内容为:针对临川区高坪镇、温泉镇、东馆镇、腾桥镇、荣山镇、秋溪镇、龙溪镇共7个城镇生活污
日前,湘潭市住建局与河东污水处理厂成功签订污水处理按效付费协议。该份协议的签订,标志着湘潭市成为湖南省第一个全部实行污水处理按效付费的城市。目前,市本级4座污水处理厂均已成功签订按效付费协议并实施,经测算,比按量付费每年可节省约1300万元。湘潭市深入贯彻习近平生态文明思想,落实《中
截至2020年底,全国地级及以上城市2914个黑臭水体消除比例达到98.2%。“十四五”期间,生态环境部将继续以水生态保护修复为核心,巩固深化碧水保卫战成果,积极推进美丽河湖保护与建设。2020年10月,中国城镇供水排水协会发布《城镇水务2035年行业发展规划纲要》,其在城镇水环境2035年总体目标中提出
对饮用水安全关注的日益提升,以及水环境污染情况的多样化,导致常规给水处理工艺技术在面对特定污染特征的原水情况下可能“力不从心”,将污水处理技术应用于给水处理工艺,已经成为了在特定情况下的工艺探索方向。
BAF工艺学名叫曝气生物滤池,是80年代末在欧美发展起来的一种新型生物膜法污水处理工艺。曝气生物滤池是一种膜法生物处理工艺,微生物附着在载体表面,污水在流经载体表面时,通过有机营养物质的吸附、氧向生物膜内部的扩散以及生物膜中所发生的生物氧化等作用,对污染物质进行氧化分解,使污水得以净化。
本篇主要讲解塔式生物滤池、曝气生物滤池部分内容。01、塔式生物滤池塔式生物滤池是生物膜法的一种构筑物。池型似塔状,塔内分层布设轻质塑料载体,污水由上往下喷淋,与填料上生物膜和自下向上流动的空气充分接触,使水得到净化。《室外排水设计规范》对于塔式生物滤池有以下几点规定。★6.9.37:塔式
本节内容主要为高负荷生物滤池部分内容。01、高负荷生物滤池工艺特点高负荷生物滤池是生物滤池的一种形式,通过回流处理水和限制进水有机负荷等措施,提高水力负荷,解决堵塞问题。值得注意的是,高负荷生物滤池所指的高负荷是水力负荷,而不是有机负荷。那高负荷生物滤池是如何实现高负荷的呢?答案是
生活污水处理设备处理生活污水时常用工艺包括:A0工艺、A2O工艺、MBR工艺、曝气生物滤池、SBR工艺。生活污水处理设备处理工艺特性分析1.AO工艺:也叫厌氧好氧工艺,在厌氧段,厌氧菌将生活污水中淀粉、碳水化合物可溶性有机物水解酸化,大分子有机物降解成小分子有机物,提高后续好氧处理能力。AO工艺具
摘要:臭氧催化氧化生物滤池是一种将臭氧氧化和生物活性炭的吸附降解作用联用的工业废水深度处理技术,主要分为两个处理单元:臭氧催化氧化处理系统和生物碳池滤池生化处理系统。通过臭氧预氧化的作用,改变废水生化特性,提高B/C比,通过活性炭吸附水中的溶解性有机物,并富集微生物,长出良好的生物
这段时间,金湾变得越来越漂亮,环境越来越好!天更蓝,水更清,草更绿……污水排放更合理,黑臭河涌不见了!今天,小金带大家来认识一个新项目不仅能让金湾的水更清还让街坊们多了一个休闲的好去处。近年来金湾区大力推进污水处理设施建设和管理工作,以“系统治理、聚焦一点、两手发力、三路推进”的
一、曝气生物滤池曝气生物滤池简称BAF,是80年代末在欧美发展起来的一种新型生物膜法污水处理工艺。曝气生物滤池是一种膜法生物处理工艺,微生物附着在载体表面,污水在流经载体表面时,通过有机营养物质的吸附、氧向生物膜内部的扩散以及生物膜中所发生的生物氧化等作用,对污染物质进行氧化分解,使
曝气生物滤池集生物氧化和截留悬浮固体于一体节省后续二次沉淀池和污泥回流,在保证处理效果的前提下使处理工艺简化。曝气生物滤池具有容积负荷高、水力负荷大、水力停留时间短、所需基建投资少、占地面积小、处理出水水质好等特点,又由于曝气生物滤池没有污泥膨胀问题,微生物不会流失,能保持较高的
北极星水处理网获悉,太原北郊污水处理厂一期改造主体工程已于近日完工,具备通水条件,正在进行最后的道路和园林绿化等收尾工程。工程完工后,该厂的污水处理能力将提升一倍,由原先的每日4万吨提升至每日8万吨。北郊污水处理厂是华北地区第一座污水处理厂,建于1959年,服务范围包括上兰村至赵庄、滨
编者按:污水处理生物脱氮过程中氧化亚氮(N2O)作为直接碳排放源,其大气升温效应较CO2高出265倍。N2O产生源于硝化与反硝化过程,主要涉及亚硝化(AOB)及其同步反硝化、常规异养反硝化(HDN)、同步异养硝化-好氧反硝化(HN-AD)和全程氨氧化(COMAMMOX)等生物途径,以及硝化过程中间产物NH2OH与NOH之非生物化
在上个月的《水星漫谈》里,小编介绍了一篇WEFTEC的杂志《WaterEnvironmentTechnology(WET)》的文章,讲的是低C/N的生物脱氮除磷案例。除了案例之外,文中的图片也吸引到小编的注意。小编发现,文中污水厂的照片来自一个PaulCockrellPhotography的工作室。在此之前,小编已经在其他地方看到过此人名字
在过去几年,美国许多小型污水处理厂都积极向生物脱氮除磷工艺升级转型。然而,新系统的出水常常不如预期,甚至不能满足NPDES(NationalPollutantDischargeEliminationSystem)的要求。原因何在?原来,进水强度不够是美国小型污水厂进行生物除磷的常见问题。那是不是意味着这些污水厂不能实现生物除磷呢
上周工艺细节管理对生物池的硝化反应进行了全面的细节讨论,这周开始对脱氮的第二步反硝化反应的工艺细节管理进行探讨,欢迎大家持续关注并参与讨论。在传统的生物脱氮理论中,氮的去除需要经过氨氮在有氧条件下被硝化菌硝化为亚硝酸根和硝酸根,而后在缺氧环境中被反硝化菌利用有机物转换为氮气释放到
当下,我国城市污水处理厂的主要矛盾已由有机物的去除转向氮、磷等营养物的去除。而城市污水处理厂目前普遍采用的传统生物脱氮除磷工艺因其自身的特点及城市污水特征,导致氮、磷污染物去除效率无法满足愈发严格的国家标准。针对这种问题,通过对同步硝化反硝化、厌氧氨氧化、反硝化除磷、短程硝化反硝化
这一周继续围绕生化池运行细节展开探讨,针对氮元素的去除进行细节内容的探讨。在污水厂中氮的去除一直是比较头疼的事情,从一开始的氨氮出水在线的实时监控到总氮的实时监控,污水厂对氮族元素的去除工艺管理也一直是在不断地深入的认识和提高中,这个过程也是污水厂从原有的粗放式的工艺管理向精细管
厌氧氨氧化技术(anammox)是20世纪90年代由荷兰代尔夫特大学开发的一种新型自养生物脱氮工艺,与传统脱氮技术相比,自养型厌氧氨氧化工艺被认为是一种更高效、节能的废水处理方法,其在厌氧或缺氧条件下以NO2--N为电子受体,利用厌氧氨氧化细菌(anaerobicammoniaoxidationbacteria,AnAOB)将氨氮直接氧化为氮气。在节约了硝化反应曝气能源的基础上,还无需外加碳源,且由于AnAOB属自养型微生物,生长缓慢,因此,可大大减少工艺的污泥产量。
2020年度国家科学技术奖励大会11月3日在北京举行。本次奖励大会共公布国家自然科学奖授奖项目46项,国家技术发明奖授奖项目61项,国家科学技术进步奖授奖项目157项,并授予8名外籍专家和1个国际组织中华人民共和国国际科学技术合作奖。
下面我参照《射雕英雄传》中郭靖的武学,讲一下我认为的污水处理学习思路。
上一篇探讨了基于生物池的精细化的管理对仪表的需求变化,高标准的出水水质要求带来了对生物处理过程进行控制需求,人工监测无法满足生物处理的复杂而变化的工艺过程的参数监测,在线检测的仪表被用于过程控制来提升工艺管理水平成为污水厂新的管控思路,那么如何在生物池内的设置在线监控来提升过程管控能力呢?
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!