登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
目前废水处理最常用的生物法对可生化性差、相对分子质量从几千到几万的物质处理较困难,而化学氧化可将其直接矿化或通过氧化提高污染物的可生化性,同时还对环境类激素等微量有害化学物质的处理方面有很大的优势。
然而O3、H2O2和Cl2等氧化剂的氧化能力不强且有选择性等缺点难以满足要求。1987年Gaze等人提出了高级氧化法(AdvancedOxidation processible, 简称AOPs),它克服了普通氧化法存在的问题,并以其独特的优点越来越引起重视。
01 高级氧化工艺“高级”在何处
高级氧化法最显著的特点是以羟基自由基为主要氧化剂与有机物发生反应,反应中生成的有机自由基可以继续参加·HO的链式反应,或者通过生成有机过氧化自由基后,进一步发生氧化分解反应直至降解为最终产物CO2和H2O,从而达到氧化分解有机物的目的。
与其他传统的水处理方法相比,高级氧化法具有以下特点:
产生大量非常活泼的羟基自由基·HO其氧化能力(2.80v)仅次于氟(2.87),它作为反应的中间产物,可诱发后面的链反应,羟基自由基与不同有机物质的反应速率常数相差很小,当水中存在多种污染物时,不会出现一种物质得到降解而另一种物质基本不变的情况;
HO无法选择地直接与废水中的污染物反应将其降解为二氧化碳、水和无害物,不会产生二次污染;
普通化学氧化法由于氧化能力差,反应有选择性等原因,往往不能直接达到完全去除有机物降低TOC和COD的目的,而高级氧化法则基本不存在这个问题,氧化过程中的中间产物均可以继续同羟基自由基反应,直至最后完全被氧化成二氧化碳和水,从而达到了彻底去除TOC、COD的目的。
由于它是一种物理化学过程,很容易加以控制,以满足处理需要,甚至可以降低10-9级的污染物;同普通的化学氧化法相比,高级氧化法的反应速度很快,一般反应速率常数大于109mol-1Ls-1,能在很短时间内达到处理要求;既可作为单独处理,又可与其他处理过程相匹配,如作为生化处理的预处理,可降低处理成本。
02 高级氧化技术的发展方向
高级氧化技术可将有机污染物矿化成二氧化碳和水,是环境友好型工艺,但其降解污染物时处理成本过高是制约其推广的“瓶颈”。在我国高级氧化技术中除少数如芬顿法、臭氧氧化技术等已在实际水处理中有所应用,其余还多处于实验室研究或小型试验阶段。只有解决了高级氧化技术投资处理成本高、设备腐蚀严重、处理水量小等缺点,才能加快其在实际工业中的应用。高级氧化技术的发展方向可总结为以下几点:
一是部分技术例如光催化氧化技术、臭氧氧化技术能够提高废水的可生化性,但单独处理焦化废水难度大、成本高,可将其与生化技术结合,降低焦化废水的生物毒性,提高可生化性,再采用低耗高效的生化法进行处理。
二是湿式催化氧化、超临界水氧化等技术对设备要求高,处理成本高,可针对反应器材质和低廉催化剂进行专项研发。在焦化废水处理中,难处理的废水如剩余氨水不要混入其他废水中,增加其废水量,进而采用上述高级氧化剂进行处理。
三是设计结构简单、效率高、能应用自然光并可长期稳定运行的反应器,提高光化学氧化、光催化氧化技术的处理效率,并将其与混凝法、吸附法等技术联合。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
抗生素是目前国际上广泛关注的四类新污染物之一。抗生素污染了水,应该用什么方法来治理?我们认为,目前膜法处理是一种比较好的处理抗生素污染水的技术。”5月17日,在第18届POPs论坛上,中国工程院院士、国家新污染物治理专家委员会副主任侯立安在“新膜处理抗生素污染水卡脖子技术难题及对策”主题
摘要:研究了铁基催化剂整砌填料“微通道”结构对于高级氧化技术处理废水的必要性,定量分析了反应器中臭氧分解率与气液逆向流和布气装置气泡大小的关系。通过现场中试,求出填料的运行阻力系数和液泛点;应用软件对试验中70例“个案”进行了统计学分析和回归,得到了运行参数(臭氧当量、水力停留时间
摘要:近些年,随着可持续发展战略在我国的逐步施行,就需要加强对城市化建设中污水的处理,这也成为当前市政的主要工作任务。城市化进程的深入也在一定程度上加剧了水资源利用的紧张程度,因此,对污水进行处理和回收利用不仅对水环境起到保护作用,还能有效缓解水资源利用压力,具有十分重要的现实意义。本文通过笔者的实践,对污水处理工艺及其回收利用的意义进行阐述,并针对当前市政污水处理和回收技术展开探讨,以实现可持续发展的目标。
工业废盐、高浓度含盐废水的安全、经济有效处置已经成为制约产生工业废盐、高浓度含盐废水相关行业发展的瓶颈问题。其处置方式按照处置物态的不同可分为湿法处置和干法处置。本文系统性地梳理了这两类方法包含的各种处理技术的优缺点,并对工业废盐、高含盐有机废水的处理技术进行了展望。
日常生产、生活中对化工产品的需求使我国化工生产发展迅速,而化工产业也导致了我国局部环境问题日趋严重,尤其是化工产业大量的废水排放,导致化工园区周边河流水质污染严重。
RO反渗透处理的基本原理RO反渗透技术已被广泛应用于工业废水深度处理中。但白玉微瑕,制取回用水和除盐水的同时,进水中的杂质被高度浓缩,产生难降解的浓水。
废水零排放是指工业废水经过重复使用后,将这部分含盐量和污染物高浓缩成废水全部(99%以上)回收再利用,无任何废液排出工厂。水中的盐类和污染物经过浓缩结晶以固体形式排出厂送垃圾处理厂填埋或将其回收作为有用的化工原料。
摘要:本文首先通过举例说明单一方法处理印染废水的原理及现状,之后引出物化处理法中的活性炭法处理印染废水,结合活性炭单一处理废水的优点及不足,提出活性炭联合其他工艺共同处理印染废水的方法。主要介绍的活性炭组合工艺有活性炭-化学氧化法,臭氧-活性炭法和微波-活性炭法。关键词:印染废水
随着石油能源需求量的不断增大,原油开采已经逐步进入中后期。有很多油井达到高含水后期,并且其综合含水率几乎达到80%以上。油田传统的一次采油及二次采油已经无法满足原有生产率。因此聚合物三次采油逐步应用。聚合物驱采技术的应用在提高原油开采率的同时也产生了大量的采油废水,这些废水必须需要
本文主要介绍在当前时代背景下,我国城市污水处理回用现状,同时探讨在当前状态下城市污水处理回用的未来发展态势。近些年,我国加快推进社会城市化进程,人口数量也呈现出快速增长的态势,在城市发展中的污水处理与居民生活之间的矛盾突显出来,得到社会各界的广泛关注。根据相关数据显示,截至2019年
一、引言伴随工业化与城市化进程迅猛推进,污水排放量持续攀升,污水处理已然成为环境保护领域的核心议题。面对成分日趋复杂的污水,传统污水处理手段逐渐暴露出短板。在此背景下,臭氧高级氧化技术作为一种高效且环保的新型污水处理技术,备受瞩目。本文将深入剖析臭氧高级氧化技术在污水处理中的实际
靖江新港工业污水处理工程项目现场,由川源供应的流化床芬顿系统顺利完成安装。靖江新港工业污水处理工程项目是靖江市新港工业园和港城科技产业园基础设施配套的新建项目,项目设计处理能力3000m/d,尾水排放COD、氨氮、总磷执行《地表水环境质量标准》中IV类标准,总氮参照执行《太湖地区城镇污水处理
党中央、国务院高度重视新污染物治理工作。党的二十大在部署“深入推进环境污染防治”时,明确提出“开展新污染物治理”的重要任务。《中共中央国务院关于深入打好污染防治攻坚战的意见》把新污染物治理能力明显增强作为“十四五”时期主要目标予以部署,并明确提出要强化源头准入,动态发布重点管控新
“现在设备真正运转起来了,距离项目正式启用就不远了。”从嘉兴市南湖工业污水处理有限公司获悉,在完成土建施工、设备安装及设备单机调试之后,设计处理规模达5万吨/天的南湖工业污水处理厂建设迎来关键节点,开始进水调试。截至目前,该项目总工程量100%完成,累计完成投资约6.4亿元。南湖工业污水
4月20日,山西省政府采购网发布运城市城西污水处理二厂项目PPP采购项目资格预审公告,项目预算金额为81383.20万元,建设工期为18个月。本项目建设内容包括污水厂厂内相关设施设备及厂外管网。本项目新建污水处理厂的设计规模为10×104m3/d;西塬湖水预处理工艺为“臭氧氧化”;混合污水(西塬湖水与城
各位大侠,请教下CAST工艺进水氨氮低,出水高是什么原因?
针对中水污泥导入脱硫系统出现起泡的问题,本研究以华能嘉祥电厂建立的现场中试装置为平台,首先利用高级氧化技术对中水污泥进行处理,降低污泥中有机物含量;然后与石灰浆液混合后通入脱硫吸收塔进行脱硫。考察了催化剂加入量对中水污泥有机物含量的脱除效果,分析了本工艺在中试装置内连续运行的稳定性。并进一步分析了经高级氧化工艺处理后的污泥对脱硫石膏的影响。结果表明,当停留时间为2h,催化剂床层高度为100cm,中水污泥的COD和TOC可分别由85.6mg/kg和9.7mg/kg下降至37.6mg/kg和1.9mg/kg。
在蓝色经济理念下,污水处资源化概念被强化。处理水回用可以弥补多行业淡水需要量,减少对新鲜水资源的过度利用。城市中每天都会产生大量市政污水,经过处理后大多被排放至地面水体。实际上,经过进一步净化的处理出水不仅可以满足市政、景观、冲厕中水用途,甚至可以取代清洁水源而用于啤酒酿造。水技术(AQUETECH)网站对此进行了专门报道。
4个月前,此前小编曾经介绍过丹麦污水厂的碳中和案例。其实除了上文提到的案例,丹麦还有很多污水厂的案例值得分享,例如它的第二大污水厂——Fredericia污水厂,早在2002年他们就启用了污泥热水解工艺来提高厌氧消化的效率。
辽宁省海城市腾鳌镇污水处理厂20000m3/d工程建设项目介绍
目前,国内大、中型工业废水处理项目主要采用臭氧氧化+曝气生物滤池(BAF)和Fenton氧化+沉淀过滤这2种深度处理技术。前者适用于废水污染物的臭氧氧化效果好、废水有回用需求的情况,在石油化工、煤化工行业废水处理中,已基本成为了一种标配工艺,后者则适用于废水无回用需求、污泥处置费用低的项目,主要应用于化纤、印染和造纸等行业的废水处理。
近日,《河北省建制镇生活污水处理设施建设技术导则(试行)》印发,导则旨在加快推进河北省建制镇生活污水处理设施建设工作,指导建制镇生活污水处理设施的规划、设计、施工和运行管理,提升全省建制镇生活污水处理设施能力和水平。本导则共分8章及附录,主要内容包括:总则、术语、基本要求、规划、
近年来,国家不断加大基础设施和环保投资力度,各项扶持政策不断出台,我国高浓度有机废水处理行业进入快速发展阶段,行业规模保持较高扩张速度。与此同时,由于高浓度有机废水具有悬浮物含量高、有机物浓度高、总氮高、水质成分复杂等特点,传统的废水处理方法难以满足新排放标准和零排放的需求,加强
如何迎接环保行业第三次浪潮?环保行业2003年开始市场化浪潮,2013年开启资本化浪潮,2023年是产品化的元年,每次浪潮都带来了行业重大的变化和巨大的机会。为了迎接环保行业第三次的产品化浪潮,3月24日,深圳清泉创始人叶昌明先生作为第21届水业战略论坛特邀嘉宾,发表了《ABM工艺产品化进阶之路——
记者近日从中铁建发展集团获悉,全国投资规模最大的工业园区污水处理项目——山西合成生物产业生态园综合污水处理及再利用项目(以下简称太原水处理项目)正在有序建设中。太原水处理项目现场航拍据了解,作为总投资超过600亿元的山西合成生物产业生态园基础设施配套项目,太原水处理项目于2020年10月
制浆造纸工业是国民经济的重要组成部分,也是水污染物排放量较大的行业。根据目前制浆工艺的生产水平,生产1t纸浆,需耗费1.2~2t原木片,产生60~100m的废水。其产生的废水水质、水量与生产工艺、原料、产品种类等密切相关。一般来说,造纸废水中的主要污染物有4类:(1)还原性物质,如木素、无机盐等
进水pH值异常紧急停水,致使污水外溢出现大量白色泡沫2022年4月19日晚,成都市新津生态环境局公布了关于“龙溪河水面漂浮不明泡沫”有关情况的说明:2022年4月18日,网络平台出现“龙溪河水面漂浮不明泡沫”视频。经核实,视频所示处位于成都市新津区龙溪河下游眉山天府新区境内。热心网民发出视频同时
废水的可生化性(Biodegradability),也称废水的生物可降解性,即废水中有机污染物被生物降解的难易程度,是废水的重要特性之一。确定处理对象废水的可生化性,对于废水处理方法的选择、确定生化处理工段进水量、有机负荷等重要工艺参数具有重要的意义。目前对可生化性的参考一般以B/C比作为参考,其实
长江经济带覆盖上海市、江苏省、浙江省、安徽省、江西省、湖北省、湖南省、重庆市、四川省、贵州省、云南省11个省市,面积占全国面积的21.4%,人口占全国的40.0%以上,对中国的经济发挥着重要作用。近几十年来,随着经济的快速发展,水环境压力显著增加,自2016以来总磷(TP)污染已经成为长江流域主要污染问题。长江经济带TP排放的管理和控制对长江流域维护水质和保障生态安全十分重要。由于不同地区自然条件、社会经济发展和工业结构上的差异,长江经济带TP分布和来源有显著差异。
北极星水处理网获悉,日前,在广东省阳江市阳西县上洋镇河北村污水处理设施施工现场,工人们正分布在不同的作业面,有条不紊地开展工作。河北村管道安装于今年10月开工,目前已经完成了10%左右,预计在12月完成管网施工。污水站点现在已经填好便道,计划下周正式开始施工站点,预计12月完成。
厌氧氨氧化技术(anammox)是20世纪90年代由荷兰代尔夫特大学开发的一种新型自养生物脱氮工艺,与传统脱氮技术相比,自养型厌氧氨氧化工艺被认为是一种更高效、节能的废水处理方法,其在厌氧或缺氧条件下以NO2--N为电子受体,利用厌氧氨氧化细菌(anaerobicammoniaoxidationbacteria,AnAOB)将氨氮直接氧化为氮气。在节约了硝化反应曝气能源的基础上,还无需外加碳源,且由于AnAOB属自养型微生物,生长缓慢,因此,可大大减少工艺的污泥产量。
水处理膜材料主要是指用于膜法水处理的产品,膜法水处理技术与传统水处理方法相比,由于具有成本较低、分离精度高、投资少、易于操作和管理、对环境二次污染小等优点,在净水和污水处理与回用中有很好的应用前景。水处理膜材料包括微滤膜、超滤膜、纳滤膜和反渗透膜。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!