登录注册
请使用微信扫一扫
关注公众号完成登录
从土水协同的整体视角看待场地修复与风险管控
针对工业场地开展修复与风险管控,需要认识到土壤与地下水的连通性。最典型的情形就是在降雨浸沥作用下,表层土壤中的重金属从固相迁移至土壤液相,随即在包气带迁移,并最终进入潜水[37-38]。现有的场地修复过程往往将土壤与地下水的修复割裂开来,这种修复模式忽略了重金属的跨界输移过程,不利于较长时间尺度内环境风险的降低。未来场地重金属修复的一个新思路是:从“地下水系统”尺度出发,深入理解场地地层主控矿物作用下重金属的固—液分配行为,明晰污染物在表层土—包气带—潜水之间的迁移过程,结合污染场地特异性条件、构建有针对性的土壤—地下水污染风险协同管控与长效修复方案。随着仪器分析技术的进步,借助稳定同位素技术和同步辐射等先进表征技术探究场地修复过程中污染物的平衡/非平衡分馏过程、污染物的络合—解络合反应机理等系列生物地球化学过程,为重金属污染物的土水协同防治提供全新思路。
针对性进行复合污染及生物有效性的精准风险评估
风险评估是污染场地再利用的重要环节。实际的城市污染场地往往存在阴阳离子复合、多阳离子复合等复杂的多金属污染特征,如电镀与金属加工制造场地存在的六价铬-铅镉铜等阴阳离子复合污染,钢铁冶炼场地存在的铅镍锌镉等多阳离子复合污染,有色金属采选冶炼场地存在的砷为主伴随镉汞铅等多阳离子复合污染等。现有研究发现,传统的重金属生物有效性评价方法体系,如DTPA、CaCl2等化学提取法,梯度扩散薄膜等原位扩散法,生物检验法等鉴定机理、适用对象与影响因素存在较大差异[39]。生物有效性的概念本身也存在模糊性,部分研究将人体有效性、植物有效性与重金属浸出浓度混为一谈。这些传统方法针对特定场地土壤条件、不同多金属污染类型的适用性亟待验证。除此之外,需要结合特定场地中污染物的实际迁移过程与暴露途径,充分认识到风险评估的场地特异性,从而避免将现有风险分析工具生搬硬套。
研发新型多金属稳定化材料
近年来,针对新型重金属稳定化材料的研究快速增长,但是大多数已有研究专注于单金属或阳离子型双金属。由于重金属之间的离子半径、水合能各不相同,部分重金属离子往往优先占据了稳定化材料表面的有效固定点位,使得剩余重金属离子的钝化效率显著降低。如何在新型材料的稳定化过程中克服多金属离子之间的交互作用,从而实现多金属离子协同高效钝化是一个重要技术难点。此外,金属阴阳离子的固定机理存在差异,铬砷等阴离子通常需要通过氧化还原、表面络合、晶格包裹实现钝化[40],而铅镉等阳离子通常最有效的钝化方式是沉淀作用[41]。因此,如何提高稳定化材料同步钝化金属阴阳离子的效率,是多金属稳定化材料研究的主要方向之一。在场地环境中,受到降雨冲刷、干湿循环、微生物作用、紫外光照射等自然因素的影响,稳定化材料表面电荷、官能团、孔隙发育、晶体结构等理化性质会发生变化(老化)。多金属元素由于沉淀溶解、氧化还原、解络合、静电排斥等作用,重新活化并造成潜在的环境风险。长效稳定化材料的研发可以从如下四个层面入手(图1)。
晶格稳定性。典型阴阳离子复合污染土壤中,砷、铬等含氧酸根阴离子由于与土壤胶体电性相同而产生静电互斥,具有高迁移性。传统修复材料往往通过提升土壤pH实现阳离子钝化,但却增强了土壤与阴离子的静电斥力,导致砷、铬迁移性增加。因此,设计强化砷、铬等阴离子固定、协同金属阳离子有效钝化的新型材料,不能单纯通过提升pH、促进表面沉淀与静电吸附等发生在材料表面的化学行为实现钝化,而是需要针对不同重金属离子靶向设计相对应的活性作用基团,将阴、阳离子通过氧化还原、吸附沉淀等作用有效包封在材料内部晶格中,从而实现长效稳定化。
抗侵蚀性能。在酸性侵蚀地区,酸性降水导致土壤阳离子重金属活化、稳定化材料关键基团溶解,从而导致稳定化失效。在这种情形下,通过利用酸性条件稳定的含铁硫酸盐矿物、具有高pH缓冲能力的2∶1黏土矿物等材料实现多金属的协同稳定化。
抗裂隙能力。土壤的干湿、冻融过程会造成土壤宏观结构的开裂,同时也不可避免地导致土壤团聚体的破坏(微裂隙)。应对这种情形造成的稳定化失效,可以借鉴新型抗裂隙水泥的作用机理,以具有延展性能力的物质(如高吸水树脂等)作为基体合成功能化材料。
长效缓释性能。针对城市绿化用地自然长期风雨暴露、重金属持续零散溶出、基质匮乏、材料老化失效、及时治理难的问题,需要研发能够将关键作用基团缓慢释放的功能化材料,利用微生物的长期作用实现长效修复。
进行长效稳定性预测与评估技术开发
目前,对于工业场地的重金属污染土壤治理,往往只考虑短时间内的污染修复或风险管控效果,而对长效稳定性缺乏精准预测和系统评估,其最终表现为近年来频发的修复场地后的次生环境污染事件。如何保障治理手段的长期有效性,提升修复或风险管控过程的净环境效益已成为国内外污染场地治理关注的重点和研究趋势。基于此,未来对于长效稳定性的预测和评估工作可以考虑从以下几个角度入手。一是完善人工加速老化方法,开展多要素耦合协同研究,研发基于物理—化学微气候调节、亦或生物—化学微生态调控的定量加速老化方法(见图2)。受场地回用等诸多客观因素的限制,我国前期大量治理后尤其是修复后的工业场地未能开展几十年的长期监控,重金属在场地条件下老化的原始数据缺失,因而利用人工加速老化方法来模拟评估场地的长效稳定性在目前研究中尤为普遍。而现有加速老化研究往往仅关注温度变化、冻融循环、降雨干湿循环、化学氧化等单一过程的作用,忽视多因素协同老化作用。此外,模拟评估通常以定性老化方法为主,缺乏定量老化手段,对不同场地的指导意义相对有限。二是开展长期监测,特别是针对修复或管控方案存在制度控制或工程控制的工业场地,应对其土壤、地下水等定期取样检测;对于采取风险管控的地块,应定期对其工程措施的完整性进行检查;监测周期的选择应与回用途径密切相关,必要时可以延长整个项目的寿命周期,杜绝“毒地开发”等事件的发生。三是加速构建长效稳定性评估指标体系。对于实际的工业污染场地,其长期稳定性受到环境因素、场地特征等多方面因素的影响。鉴于此,应充分挖掘耦合人工加速老化和实际长期监测的数据结果,筛选关键影响因子,探究不同因子间关联效应(见图2),并选取典型重金属污染场地(如电镀、钢铁冶炼等),进而构建可复制推广的长效稳定性评估体系。
构建全流程管理体系
对于我国工业场地重金属污染土壤的管理,应强化“调查评估—修复/风险管控—安全回用后期监管”的全流程管理体系,加快完善出台相关技术标准或指南。如对安全回用后场地的长期监管体系,我国尚无明确的指南标准,这使得部分监管处在空白阶段,难以对具体工作展开指导。而对于已经出台的相关技术指南或标准,应及时更新完善。针对不同污染类型、不同治理技术的系列标准,应增强具体内容的针对性和精细化程度,提高相关技术标准或指南的有效性。对于全流程管理体系中的各个监管部门,应充分加强部门间的协调与合作,建立科学的管理审批和信息共享流程,提高监管和工作效率。此外,当地生态环境部门应及时对场地进行公开公示,适时开展相关科普交流活动,帮助普通民众树立正确认知,降低周边民众的心理隔阂,减少或避免“邻避效应”的产生,保障生态环境与和谐社会建设的相辅相成。
*基金项目:国家自然科学基金面上项目“汞砷镉复合污染农田土壤生物地球化学过程及风险阻抗机理研究(42077118)”;科技部国家重点研发计划“场地土壤多金属污染长效稳定修复功能材料制备(2020YFC1808000)”
【作者简介】
侯德义:清华大学环境学院长聘副教授,本文通讯作者;
张凯凯:清华大学环境学院博士后;
胡 莹:清华大学环境学院博士后;
王刘玮:清华大学环境学院博士研究生;
宋易南:清华大学环境学院博士研究生;
金远亮:清华大学环境学院博士研究生;
宗汶静:清华大学环境学院硕士研究生
参考文献
[1]全国土壤污染状况调查公报[EB/OL]. 2014-04-17. /foot/site1/20140417/782bcb88840814ba158d01.pdf.
[2]陈梦舫. 我国工业污染场地土壤与地下水重金属修复技术综述[J]. 中国科学院院刊, 2014, 29(3): 327-335.
[3]HOU Y, ZHANG T. Evaluation of major polluting accidents in China—Results and perspectives[J]. Journal of Hazardous Materials, 2009, 168(2-3): 670-673.
[4]GAO Y, XIA J. Chromium Contamination Accident in China: Viewing Environment Policy of China[J]. Environmental Science and Technology, 2011, 45(20): 8605-8606.
[5]YANG S, FENG W, WANG S, et al. Farmland heavy metals can migrate to deep soil at a regional scale: A case study on a wastewater-irrigated area in China[J]. Environmental Pollution, 2021, 281: 116977.
[6]姜林, 梁竞, 钟茂生, 等. 复杂污染场地的风险管理挑战及应对[J]. 环境科学研究, 2021, 34(2): 458-467.
[7]王超, 李辉林, 胡清. 我国土壤环境的风险评估技术分析与展望[J]. 生态毒理学报, 2021, 16(1): 28-42.
[8]ZHONG M S, JIANG L. Refining health risk assessment by incorporating site-specific background concentration and bioaccessibility data of Nickel in soil[J]. Science of the Total Environment, 2017, 581: 866-873.
[9]JIN Y, O' CONNOR D, OK Y S, et al. Assessment of sources of heavy metals in soil and dust at children's playgrounds in Beijing using GIS and multivariate statistical analysis[J]. Environment International, 2019, 124: 320-328.
[10]JIANG Z, LIAN Y, QIN X. Rocky desertification in Southwest China: Impacts, causes, and restoration[J]. Earth-Science Reviews, 2014, 132: 1-12.
[11]ANDREO B, GOLDSCHEIDER N, VADILLO I, et al. Karst groundwater protection: First application of a Pan-European Approach to vulnerability, hazard and risk mapping in the Sierra de Libar (Southern Spain)[J]. Science of the Total Environment, 2006, 357(1-3): 54-73.
[12]HARTMANN A, JASECHKO S, GLEESON T, et al. Risk of groundwater contamination widely underestimated because of fast flow into aquifers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(20): e2024492118.
[13]FIORI A, BELLIN A, CVETKOVIC V, et al. Stochastic modeling of solute transport in aquifers: From heterogeneity acterization to risk analysis[J]. Water Resources Research, 2015, 51(8): 6622-6648.
[14]周建军, 周桔, 冯仁国. 我国土壤重金属污染现状及治理战略[J]. 中国科学院院刊, 2014, 29(3): 315-320.
[15]叶萌. 土壤重金属污染修复及淋洗技术研究[J]. 中国资源综合利用, 2021, 39(5): 144-146.
[16]DERMONT G, BERGERON M, MERCIER G, et al. Soil washing for metal removal: a review of physical/chemical technologies and field applications[J]. Journal of Hazardous Materials, 2008, 152(1): 1-31.
[17]王泓博, 苟文贤, 吴玉清, 等. 重金属污染土壤修复研究进展:原理与技术[J]. 生态学杂志, 2021, 40(8): 2277-2288.
[18]LIU L, LI W, SONG W, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability[J]. Science of the Total Environment, 2018, 633: 206-219.
[19]VOGAN J, FOCHT R, CLARK D, et al. Performance evaluation of a permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater[J]. Journal of Hazardous Materials, 1999, 68(1-2): 97-108.
[20]WU Q, ZHAO J, QIN G, et al. Photocatalytic reduction of Cr(VI) with TiO2 film under visible light[J]. Applied Catalysis B: Environmental, 2013, 142-143: 142-148.
[21]CHEN J, CHEN R, HONG M. Influence of pH on hexavalent omium reduction by Fe(II) and sulfide compounds[J]. Water Science and Technology, 2015, 72(1): 22-28.
[22]张振. 重金属污染土壤修复技术研究[J]. 科技风, 2021, (15): 136-138.
[23]邓旭. 我国水泥窑协同处置废物的现状与建议[J]. 中小企业管理与科技(下旬刊), 2021(8): 158-159.
[24]洪甜蜜. 水泥窑协同处置危险废物技术现状与发展趋势[J]. 环境与发展, 2019, 31(3): 72-73.
[25]CHEN Q Y, TYRER M, HILLS C D, et al. Immobilisation of heavy metal in cement-based solidification/stabilisation: a review[J]. Waste Management, 2009, 29(1): 390-403.
[26]CONTESSI S, CALGARO L, DALCONI M C, et al. Stabilization of lead contaminated soil with traditional and alternative binders[J]. J Hazard Mater, 2020, 382: 120990.
[27]WANG L, RINKLEBE J, TACK F M G, et al. A review of green remediation strategies for heavy metal contaminated soil[J]. Soil Use and Management, 2021: 1-28 (early access).
[28]WANG L, HOU D, SHEN Z, et al. Field trials of phytomining and phytoremediation: A critical review of influencing factors and effects of additives[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(24): 2724-2774.
[29]YANG L, ZHENG M, ZHAO Y, et al. Unintentional persistent organic pollutants in cement kilns co-processing solid wastes[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109373.
[30]LI Y Q, WANG H Z, ZHANG J, et al. A feasibility study on co-processing of soil contaminated with heavy metals in cement kilns[J]. Applied Mechanics and Materials, 2015, 768: C135-141.
[31]孙绍锋, 蒋文博, 郭瑞, 等. 水泥窑协同处置危险废物管理与技术进展研究[J]. 环境保护, 2015, 43(1): 41-44.
[32]宋云, 李培中, 郝润琴. 我国土壤固化/稳定化技术应用现状及建议[J]. 环境保护, 2015, 43(15): 28-33.
[33]WANG F, WANG H, AL-TABBAA A. Leachability and heavy metal speciation of 17-year old stabilised/solidified contaminated site soils[J]. Journal of Hazardous Materials, 2014, 278: 144-151.
[34]WANG L, O'CONNOR D, RINKLEBE J, et al. Bio aging: mechanisms, physicochemical changes, assessment, and implications for field applications[J]. Environmental Science and Technology, 2020, 54(23): 14797-14814.
[35]CUI H, FAN Y, FANG G, et al. Leachability, availability and bioaccessibility of Cu and Cd in a contaminated soil treated with apatite, lime and coal: A five-year field experiment[J]. Ecotoxicology and Environmental Safety, 2016, 134: 148-155.
[36]SUI F, ZUO J, CHEN D, et al. Bio effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study[J]. Environmental Science and Pollution Research, 2018, 25(4): 3368-3377.
[37]谷庆宝, 马福俊, 张倩, 等. 污染场地固化/稳定化修复的评价方法与标准[J]. 环境科学研究, 2017, 30(5): 755-764.
[38]CHEN G, ZENG G, DU C, et al. Transfer of heavy metals from compost to red soil and groundwater under simulated rainfall conditions[J]. Journal of Hazardous Materials, 2010, 181(1-3): 211-216.
[39]ADAMO P, AGRELLI D, ZAMPELLA M. Chemical speciation to assess bioavailability, bioaccessibility and geochemical forms of potentially toxic metals(PTMs) in polluted soils. 2018: 153-194.
[40]KOMARE M, VANEK A, ETTLER V. Chemical stabilization of metals and arsenic in contaminated soils using oxides - A review[J]. Environmental Pollution, 2013, 172(6): 9-22.
[41]PALANSOORIYA K N, SHAHEEN S M, CHEN S S, et al. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review[J]. Environment International, 2020, 134: 105046.
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
2024年3月13日,重庆中渝电镀有限公司原址场地及影响区污染土壤治理修复项目EPC总承包招标,工程总投资额1379.92万元,本项目合同估算金额1054.76万元,本项目总占地面积约15772平方米,建设规模为土壤开挖、场内短驳29055立方米,污染土壤外运至水泥厂处置9592吨,桩板挡墙588.9立方米,场地清表及外运
为进一步规范社会化生态环境检验检测机构服务行为,加强生态环境检测质量管理,促进全区社会化生态环境检验检测服务市场健康发展,宁夏回族自治区生态环境厅印发《加强社会化生态环境检验检测机构及其检测质量管理规定(试行)》,全文如下:加强社会化生态环境检验检测机构及其检测质量管理规定(试行
宁夏回族自治区生态环境厅发布《加强社会化生态环境检验检测机构及其检测质量管理规定(试行)(征求意见稿)》,以进一步规范自治区社会化生态环境检验检测机构服务行为,加强生态环境检测质量管理,促进全区社会化生态环境检验检测服务市场健康发展。详情如下:关于公开征求《加强社会化生态环境检验
在经历政策驱动下的快速发展后,土壤修复行业将进入高质量发展的关键期,修复技术也将逐渐向低成本、低碳、绿色高效以及可持续的修复模式发展,对精细化要求也会越来越高。“十四五”期间石油石化行业环保工作越来越受到重视,含油污泥相关的标准规范也陆续出台,油泥治理工作也将大面积开展。7月13-14
北极星环境修复网获悉,3月17日,重庆市公共资源交易网发布长安三工厂片区城市更新(一期)江北区观音桥组团K标准分区K17-404、K20-203、K22-1-103、K22-1-203地块及周边部分道路区域土壤污染修复项目招标公告,项目预算金额1200万元,招标范围为对长安三工厂片区城市更新(一期)江北区观音桥组团K标
9月13日,河南省生态环境厅批复河南金马能源股份有限公司5.5米捣固焦炉大型化提升改造项目环境影响报告书。项目概况:金马能源现有2座5.5m捣固焦炉(1座25孔炭化室,1座55孔炭化室)及其配套的煤气化产回收利用工程,现有焦化产能65.45万t/a。本项目属于改建项目,拟淘汰现有2座5.5m捣固焦炉,建设1座6
摘要:为查明河北某电镀污染场地Cr6+的污染程度和空间分布,并对其可能影响的污染范围及风险进行预测,采用取样化验、三维数值模拟等方法对污染场地进行调查和评价。结果表明:污染场地在未进行人工干预治理时,污染物受到地下水流向和含水层介质的影响,在电镀废水停止泄露后的180d内,调查区西南部大片区域的地下水有被污染的风险。
日前,中国政府采购网发布了吉林市土地储备中心2021年土地收储出让地块土壤污染状况调查评价服务项目公开招标公告。预算金额2000万元,服务周期一年,开标时间2021年11月09日09点30分(北京时间),不接受联合体投标。详情如下
搬迁企业原址场地可能受原生产生活遗留有毒有害物质的污染,因此,在原场地再利用之前必须对其进行污染调查。对北京市某化工厂搬迁场地进行土壤污染初步调查,以超建设用地二类用地的筛选值或管制值来表征污染物超过土壤背景值的程度。初步污染调查结果表明,该场地土壤中苯、甲苯、氯苯、四氯化碳和氯仿浓度超标。其中苯、四氯化碳和氯仿的最大浓度分别超筛选值的32.5倍、59倍和151.2倍,且都超管制值,属于重度污染;甲苯最大浓度超筛选值(等于管制值)3.23倍,属于中—重度污染;氯苯略微超过筛选值,属于轻度污染,超标土样均来自同一钻孔AD56。
本文以四川省某工业渣场为研究对象,依据场地的情况,确定了45个钻孔,按照10~20cm分层为土壤取样,测定了土壤中钡(Ba)、砷(AS)、锰(Mn)等重金属元素及硫酸根离子、氯离子的含量及特征分布。分析结果表明调查场地土壤主要受污染因子为钡、氯离子和硫酸盐,其次为砷、锰。
5月22日,重庆市发展和改革委员会印发《推动经济社会发展全面绿色转型行动计划(2025—2027年)》的通知。三年行动计划指出:1、推动传统产业“智改数转绿色化”转型。推动钢铁、有色、石化、化工、建材、造纸、印染等行业实施节能降碳改造升级,深入推进“绿效码”应用,推进存量低效数据中心节能降碳
北极星电力网获悉,重庆市发改委5月22日正式印发《推动经济社会发展全面绿色转型行动计划(2025—2027年)》指出:统筹提升能源安全供应能力。夯实市内电源基础,加快推动两江燃机二期等天然气发电、合川双槐三期煤电项目,加快云阳建全、丰都栗子湾、奉节菜籽坝抽水蓄能电站建设。全力推进外电入渝工
5月22日,重庆市发展和改革委员会印发《推动经济社会发展全面绿色转型行动计划(2025—2027年)》。文件提出,健全以治水治气为牵引的“九治”生态治理体系。打好治水攻坚战,加快污水收集处理设施新建改扩建进度,全域全面消除黑臭水体。打好治气攻坚战,严格控制PM2.5浓度。加强土壤污染源头防控,协
北极星氢能网获悉,5月21日,上海市科学技术委员会发布《2025年度关键技术研发计划“新能源”项目申报指南》,征集范围包括:绿色燃料、可再生能源、新型储能、新型电力系统。其中绿色燃料领域包括电催化合成氨关键技术、质子交换膜电解水制氢高性能膜电极开发及批量化制造技术、阴离子交换膜电解水制
5月21日,国家金融监督管理总局等八部门联合印发《支持小微企业融资的若干措施》,支持小微企业开展股权融资。支持符合条件的小微企业在新三板挂牌,规范成长后到北交所上市,引导社会资本更多向创新型中小企业聚集,带动同行业、上下游小微企业共同成长。支持地方金融管理部门指导辖内区域性股权市场
随着构建新型能源体系、新型电力系统及新型电网的不断推进,电力系统的结构形态、运行控制方式及规划建设与管理发生了根本性变革。这场变革不仅体现在技术创新上,还涉及能源结构的优化与电网管理的现代化。在构建新型能源体系中,“十五五”期间的大电网扮演着至关重要的角色,它不仅承上启下,连接着
近日,国家能源局发布《关于进一步加强电力应急体系和能力建设的指导意见》。其中指出,加快推进国家级电力应急力量建设。国家能源局细化明确国家级电力应急基地和研究中心建设节点、能力标准、保障要素等要求,推动建成7个国家级电力应急基地和2个研究中心并形成实战能力,不断提升跨区跨企应对重特大
近日,国家能源局发布关于进一步加强电力应急体系和能力建设的指导意见。其中明确,加快推进国家级电力应急力量建设。国家能源局细化明确国家级电力应急基地和研究中心建设节点、能力标准、保障要素等要求,推动建成7个国家级电力应急基地和2个研究中心并形成实战能力,不断提升跨区跨企应对重特大突发
5月15日,云南省发展和改革委员会发布关于昆明市宜良县中营风电场扩建项目核准的批复。公告显示,昆明市宜良县中营风电场扩建项目建设地点位于昆明市宜良县,总装机容量15万千瓦,主要建设24台风电机组。项目总投资80904.57万元,项目单位为华润新能源(宜良)有限公司。详情见下:昆明市发展和改革委
北极星输配电网整理了5月12日~5月16日的一周电网项目动态。西藏芒康县110千伏嘎托变电站近日,西藏昌都供电公司在芒康县110千伏嘎托变电站主变压器增容改造现场使用移动式变电站进行负荷转供,这是移动式变电站在昌都市首次投入使用。移动式变电站作为核心过渡电源,可有效缩短负荷转供时的停电时长。
5月14日,云南省发展和改革委员会发布关于云南泸西抽水蓄能电站项目核准的批复,项目建设地点位于红河州泸西县向阳乡。建设6台额定容量35万千瓦的单级立轴单转速混流可逆式蓄能机组,总装机210万千瓦。枢纽主要包括上水库、下水库、输水系统、地下厂房和地面开关站等。详情如下:云南省发展和改革委员
近日,永清环保成功中标深圳玉龙填埋场库底土稳定化处理设备运维服务(含设备)采购项目。凭借在土壤修复领域深耕多年所积累的技术实力与丰富的项目经验,此次中标无疑为公司进一步拓展区域环保市场奠定了坚实基础。位于深圳罗湖的玉龙填埋场环境修复工程是全国最大的环境修复项目。在同类项目中占据“
近日,《深圳市促进安全节能环保产业集群高质量发展的若干措施》印发,措施自5月23日起施行,有效期5年。本措施重点支持建筑安全、施工安全、火灾等灾害监测预警产品,消防无人机、应急通讯与指挥等应急救援处置装备,安全应急服务等安全应急领域;高效电机与变频器、半导体照明、先进制冷、建筑节能、
北极星储能网获悉,5月15日,深圳市发展和改革委员会关于印发《深圳市促进安全节能环保产业集群高质量发展的若干措施》(以下简称《措施》)的通知。《措施》指出,发展片区、园区综合能源服务。支持深圳湾总部基地、香蜜湖片区以及各类园区示范应用综合能源管理服务,深度融合数字能源、分布式能源、
中国环保产业协会发布2023年环境监测行业评述及2024年发展展望:为及时反映生态环保产业过往一年的发展动态,预测新一年的发展趋势,我会组织各分支机构编写了《2023年行业评述及2024年发展展望》,供环保企事业单位、专家和管理者参考。本文为《2023年环境监测行业评述及2024年发展展望》,作者为中国
近500家知名企业参展,300余位环保行业大咖演讲,20余场行业专题论坛……一场属于华南环保人的盛会它来了!9月20-22日,第八届中国环博会广州展(IEexpoGuangzhou)将在广州的中国进出口商品交易会B盛大开幕!01促进新格局,助力华南环保行业高质量发展高质量的环境保护需要高素质的环保产业,环保产业
“无废城市”是在新发展理念引领下,通过推动形成绿色生产生活方式,持续推进固体废物源头减量和资源化利用,最大限度减少填埋量,将固体废物环境影响降至最低的城市发展模式。土壤与地下水污染管控与修复也是国家环境污染治理的重大需求,为深入贯彻落实《中共中央国务院关于深入打好污染防治攻坚战的
6月25日,生态环境厅召开新闻发布会。会上通报了2起生态环境执法典型案例。案例一中铁建四川德都高速公路有限公司违反土壤污染风险管控和修复管理制度案近期,成都市生态环境局执法人员根据上级移交线索对原都江堰市红星电镀厂地块开展现场检查,发现中铁建四川德都高速公路有限公司在该地块上修建了三
贵州省生态环境厅印发《贵州省“十四五”土壤、地下水和农村生态环境保护规划》,规划围绕贵州省历史遗留、土壤及地下水突出问题和农村生态环境保护等方面谋划了13个重大项目。其中土壤污染防治包括历史遗留固体废物排查整治、18个县区耕地污染成因排查、在产企业污染源治理、农用地安全利用、建设用地
在经历政策驱动下的快速发展后,土壤修复行业将进入高质量发展的关键期,修复技术也将逐渐向低成本、低碳、绿色高效以及可持续的修复模式发展,对精细化要求也会越来越高。“十四五”期间石油石化行业环保工作越来越受到重视,含油污泥相关的标准规范也陆续出台,油泥治理工作也将大面积开展。7月13-14
中国环保产业协会发布2022年土壤修复行业评述及2023年发展展望,全文如下:为了及时反映生态环保产业过往一年的发展动态,预测新一年的发展趋势,我会组织各分支机构编写了《2022年行业评述和2023年发展展望》,供环保企事业单位、专家和管理者参考。2022年是实施“十四五”规划关键之年,也是深入打好
北极星垃圾发电网获悉,9月7日,商丘市生态环境局发布商丘市生活垃圾焚烧发电项目(二期)环境影响报告书受理公示,商丘市生活垃圾焚烧发电项目作为静脉产业园3个重点项目之一,由商丘中电环保发电有限公司负责投资建设并运营,设计总规模为2400t/d垃圾焚烧和4×12MW凝汽式发电,规划垃圾收集范围为:
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!