3.4转运站渗沥液,可采用密闭运输送到城市污水厂,排入城市排水管道,进入城市污水厂或自行处理。
排入设置城市污水厂的排水管网的,应在转运站内对渗沥液进行处理,总汞、总镉、总铬、六价铬、总砷、总铅等污染物质量浓度达到表2规定,其他水污染物排放控制要求由企业与城市污水厂根据其能力商定或执行相关标准。
排入环境水体或排入未设置污水处理厂的排水管网的,应在转运站内对渗沥液处理达到表2规定。
3.5监测
水污染物排放口设置符合GB15562.1要求的排放口标志。新建生活垃圾填埋场应安装自动监控设备,与环保部门监控中心联网。环保部门定期监督性监测。
04、渗滤液生物处理原理
在有氧的条件下,废水中的有机物分解分两个阶段。第一阶段叫碳氧化阶段,主要是不含氮有机物的氧化,但也包括含氮有机物的氨化及氨化后生成的不含氮有机物的继续氧化,也就是有机物中碳氧化为二氧化碳的过程;第二阶段也称硝化阶段,即氨在硝化细菌的作用下,被氧化为NO2-和NO3-所消耗的氧量叫硝化需氧量或硝化BOD。
在缺氧的条件下,厌氧生物直接处理高浓度的有机渗滤液,将有机物转化为CH4,经过燃烧转化为CO2。特别强调的是反硝化过程,反硝化菌属于异养型兼性厌氧菌的细菌,在厌氧条件下,利用硝酸和亚硝酸离子中的氧进行呼吸,以有机底物(有机碳)为电子供体,使硝酸盐还原,使有机物分解为CO2和H2O。
平谷渗沥液厂日处理200t,生物处理工艺如下:
4.1缺氧条件下:
1、调节池发生厌氧反应,尤其夏季高温液位条件下,增加内部回流,接收部分剩余污泥后,COD出水/来水比值可达到0.3-0.6,由于停留时间长达25d,氨化反应也同时进行。
2、反硝化罐中反硝化菌利用回流过来的NO3-和NO2-中的O进行呼吸,利用来水有机物为碳源(电子供体),进行同化和异化反硝化反应,同化合成有机氮化合物,成为菌体的组成部分;异化分解成N2、CO2和H2O。
4.2有氧条件下:
1、碳氧化罐发生好氧反应,主要设计活跃的是异氧型好氧细菌,以有机物为碳源,获取生物生命活动所需的能量,完成有机污染物的无机化过程。
2、硝化罐内发生也是好氧反应,是属于第二阶段的好氧反应,为硝化阶段。在此罐内活跃的是硝化细菌,利用氧气来呼吸,将氨氮氧化为NO2-和NO3-,获得的能量,用于固定和还原无机碳,属于自养型细菌。氮元素在硝化细菌的作用下转化为NO2-和NO3-,还需回流到反硝化罐通过反硝化细菌作用转化为氮气,最终脱离水体,达到水体净化的目的。
05、渗滤液生物处理工艺特点
5.1厌氧生物滤池
针对新鲜渗滤液高COD(20000mg/L以上),源自高浓度有机废水处理工艺。所谓新鲜渗滤液产生时间指在稳定垃圾堆体停留时间较短或反应不充分,有机物未被堆体内产甲烷菌充分吸收分解,而被收集到渗滤液收集、运输和贮存系统。
优点:
1、有机容积负荷率高。厌氧生物法的负荷率一般为5~10kgCOD/(m3.d)。
2、污泥产量低。剩余污泥量仅为好氧生物处理法的1/6~1/10。
3、动力消耗低。是一般活性污泥法的1/10左右,产生的沼气可作为能源,去除每kgCOD产气量一般是0.35m3沼气。
4、营养盐需用量少。
5、水温的适宜范围广。10℃~30℃、30℃~40℃、50℃~60℃、而好氧一般认为20℃~30℃。
6、生物滤池法克服了厌氧微生物增值缓慢的缺点,可从传统的8~12周缩短到2~4周。
7、生物滤池出水COD往往还在4000mg/L以上,但后续反硝化需要有机碳源,也克服了处理后水质差的缺点。并可根据后续碳源需要情况通过控制温度或进水流量得到想要的出水COD值。
缺点:
1、非溶解性有机物在常温厌氧是困难的,高温更有利于对纤维素的分解。
2、中后期COD低的渗滤液,NH3-N高,C:N比低于5的情况,生物厌氧滤池失去作用。
3、填料因结垢,一般寿命不超过3年,更换时工期长,费用较多,作业环境恶劣。
5.2硝化与反硝化
1、渗滤液氨氮浓度高,1500~4000mg/L,是生活污水约100倍,远超传统进水总氮浓度30mg/L限值。
2、超滤膜引进到渗滤液生化池中来,用于泥水分离,截留易流失的硝化反硝化细菌。
3、污泥浓度10~20g/L,是传统工艺2.5~5倍,缩小反应器体积,减少基建成本。
4、循环比(R)
内循环回流的作用是向反硝化反应器内提供硝态氮,使其作为反硝化反应的电子受体,从而达到脱氮的目的。内循环回流比不仅影响脱氮效果,而且也影响工艺系统的动力消耗。
由于污泥浓度的变化,目前运行好的系统或通常经验,R值远高于600%(1400%~2000%)。类似于传统工艺的流化床,可能的原因是溶解氧在高浓度污泥扩散和消耗同低浓度污泥不同,如内循环也自硝化池含有一定的溶解氧,使反硝化难于保持理想的缺氧状态。
5、水力停留时间
传统工艺认为硝化反应需时6h,反硝化反应需要较短,在2h之内即可完成。硝化与反硝化的水力停留时间比为3:1,而渗滤液硝化反硝化池水力停留时间比较成功的案例为4~5d,是传统工艺的20倍。硝化与反硝化水力停留时间比接近1:1,而且有越来越保守的趋势,可能原因相关其它的活性污泥对脱氮作用的减少(合成自身对N元素的需求),出水标准的提高,以及回流比增加中DO对反硝化的冲击,造成反硝化反应器体积不断增加。
6、温度控制及pH等
一般认为硝化菌适宜的30°C,反硝化细菌35°C。在目前的控制中多涉及到降温控制,均控制在35°C左右,东北等纬度高的地域也有尝试25℃~30℃。
pH控制认为7.5~8.5,也有许多尝试6.0~7.0。
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有