北极星

搜索历史清空

  • 水处理
您的位置:环保节能余热余压技术正文

【分析】焦化厂余热回收利用技术

2015-07-30 09:37来源:生意社作者:郑文华关键词:余热回收焦化厂干熄焦技术收藏点赞

投稿

我要投稿

3.4用半导体差压发电技术回收荒煤气余热

2010年,国内某焦化厂在JN43-80型42孔焦炉的一个上升管上进行了用半导体温差发电技术回收上升管余热的试验。取消传统上升管内衬砖,在上升管外壁安装半导体温差发电模块。当高温荒煤气通过上升管时,热量通过上升管筒体传递到半导体温差发电模块的热面,形成温度为320℃左右的热场;散热器通过冷却水的冷却使半导体温差发电模块的冷面温度稳定在70℃左右;这样在半导体温差发电模块的冷热面间形成约250℃的温差,在塞贝尔效应的作用下,半导体发电模块的两端产生直流电压,输出电能,使热能直接转变成电能,实现能量的全固态转换。

试验历时72个小时,涵盖3个完整的结焦周期,获取了温度、电压、电流、流量等2700多个数据。试验结果是:单根上升管回收的热能可发电500W,同时每小时可提供98℃的热水400kg。随后直接在另一焦化厂60孔新建焦炉上进行全炉试验。

2011年初投产后,因出现冷却器漏水等问题而失败。

3.5荒煤气余热微流态回收技术

国内某焦化企业首先在一个上升管进行用水套管回收上升管荒煤气余热的试验。研发出低热应力的换热结构、高导热耐腐蚀的上升管内衬材料及高效导热介质材料。试验数据表明,单个上升管可回收0.6kPa、161℃的蒸汽158kg/h,后续将采用两级低压蒸汽螺杆膨胀机发电,实现回收热量的最大化。

中试获得成功后,在某企业一座焦炉55个上升管中进行工业化试验,其荒煤气余热回收效率达到32%,吨焦可降低炼焦工序能耗10kgce。2012年2月所产蒸汽并网运行。以该企业蒸汽结算价计算,每年可创直接经济效益560万元。后续工序还能减少氨水循环量、冷却用循环水、循环水系统电耗及补充水消耗。每组焦炉每年可减少二氧化碳排放2.8万t,节能减排效果显著。

但是在运行八个月后,因种种原因出现变形问题。为此,现在5个上升管上继续进行改进试验,至2013年4月底已稳定运行两个月,前景看好。

3.6用荒煤气带出热对COG进行高温热裂解或重整

20世纪90年代,德国人提出将高温荒煤气从炭化室逸出后不冷却,直接进入热裂解炉,将COG中煤焦油、粗苯、氨、萘等有机物热裂解成以CO和H2为主要成分的合成气体,然后去合成氨或合成甲醇或生产二甲醚,也可以直接还原制海绵铁。

日本人直接把焦炉上升管和集气管改造成COG重整装置,利用COG自身显热和夹带的水分,直接鼓入纯氧,发生高温裂解和转化反应,重整生成合成气。优点是节能;可大幅度提高H2、CO成分和调整H2与CO的比例;不产生焦油等副产品,可大幅降低生产用水量和污水排放。不足是不回收COG里的焦油、粗苯等副产品,等于失去许多难以替代的化学物质;焦炉每个炭化室至少有一个上升管,而且管内荒煤气量波动、压力很低,把它们逐一或分组改造成在高温下工作的重整炉,无论从技术上还是从经济上实施起来都有一定难度。

日本煤炭能源中心在三井矿山焦化厂的焦炉间进行了一孔炭化室无催化转化技术试验。即安装一个COG重整装置,在1200-1250℃的高温下,分别对焦炉上升管直接排出的650-750℃高温COG和经煤气净化车间净化后的COG进行重整、生成合成气的对比试验。对两种COG无催化高温转化合成甲醇进行了经济性对比。试验结果表明:对焦化厂而言,将高温荒煤气全部进行高温热裂解、合成甲醇比回收煤焦油后净化的COG高温热裂解、合成甲醇能获得更高的效益。2009年,日本拟继续进行三孔炭化室试验,然后进行商业化评估并推进中型试验。

3.7回收初冷器前或第一段的荒煤气余热和循环水余热

1)以荒煤气余热为热源的高效负压蒸氨工艺。

为充分利用吸煤气管道或者初冷器顶74-82℃的荒煤气余热,国内某企业提出用循环热介质吸收荒煤气余热后,温度控制在60-78℃。为保证此热介质的热量能在蒸氨工艺中有效利用,将蒸氨塔操作压力用真空泵或者喷射器抽吸至15-35kPa,操作温度控制在55-70℃。将蒸氨塔塔底蒸氨废水与吸收了荒煤气余热的热介质在再沸器中换热后作为蒸氨热源。

原标题:焦化厂余热回收利用技术
投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

余热回收查看更多>焦化厂查看更多>干熄焦技术查看更多>