登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
厌氧颗粒污泥中毒、失去活性,其后果是严重的。如果长时间不能恢复,废水无法处理,将影响生产甚至造成停产;即使及时外购厌氧颗粒污泥,其运输时间加上厌氧启动时间至少也需要15-20天,另外厌氧颗粒污泥价格昂贵,运费高,会给企业带来较大的经济损失。因此,将现有的中毒时间不久的厌氧颗粒污泥,尽快恢复活性才是最佳方案。今天我们介绍初步判断厌氧颗粒污泥中毒及恢复其活性的方法。
1. 厌氧颗粒污泥中毒的特点
(1)厌氧反应器去除率下降
发现厌氧反应过程COD去除率下降,甲烷产量明显减少时,要注意厌氧颗粒污泥是否已经开始中毒,如果厌氧反应过程COD去除率几乎为零(进出水COD比较接近),几乎不产甲烷时,可初步判断厌氧颗粒污泥中毒。
(2) 挥发性脂肪酸VFA升高
厌氧反应器排出的废水中,如果挥发性脂肪酸(VFA)浓度超出正常值并持续升高,甚至升至8-17 mmol/L(正常时VFA浓度小于5 mmol/L),即有厌氧颗粒污泥中毒趋势。
(3) 厌氧反应器出水pH值发生变化
如果厌氧颗粒污泥pH值异常,即其pH值出现大于厌氧反应器出水pH值的情况(一般情况下,正常运行时厌氧颗粒污泥值与厌氧反应器出水pH值相同或略小),有大量厌氧颗粒污泥外观不呈颗粒状并伴有破碎糜烂现象,出水颗粒污泥流失严重,颗粒污泥开始大量失去活性甚至全部失去活性。
综合以上几种现象,可判断厌氧颗粒污泥已中毒,并已失去活性。
2. 处理方法
(1) 发现并确定厌氧颗粒污泥中毒时,必须及时关闭厌氧反应器进水阀门,并关停废水供料泵,停止进水。
(2) 及时通过进水泵打入清水,对厌氧颗粒污泥进行最大限度地清洗,每2小时取样分析VFA的变化情况,恢复期间进行连续跟踪测定。
(3) 当VFA开始向低值方向变化时,可开始小量进入废水,并及时跟踪VFA、甲烷产量的变化,该步骤可连续进行1-2天。
(4) 提高进水量至200m3/h,并按比例投加营养盐,同样及时跟踪VFA、甲烷产量的变化。
(5) 提高进水水量至300m3/h,并按比例投加营养盐,及时跟踪VFA、产甲烷量的变化,该步骤可连续进行3-5天,此时开始有少量甲烷产生,产甲烷菌慢慢恢复活性。
(6) 提高进水水量至400m3/h,并按工艺要求投加营养盐,同样及时跟踪VFA、产甲烷的变化,该步骤可连续进行,此时开始有较大量甲烷产生,产甲烷菌开始恢复活性。
以上步骤控制pH值相当重要,pH值一般在6.5-7.5之间,7.1最佳,这是产甲烷菌的最佳pH值。同时控制营养盐投加比例,精心调整废水处理负荷与VFA变化,认真跟踪观察甲烷产量也十分重要。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
厌氧氨氧化(Anammox)工艺因无需外加有机碳源,污泥产量低,运行成本低、脱氮效率高等优点,适用于处理低碳氮比的高氨氮废水。而实际废水中含有浓度和种类不同的有机物,通常认为有机物的存在会对厌氧氨氧化菌产生负面影响。此外,厌氧氨氧化污泥颗粒化可以最大程度持留微生物量,强化功能菌的增殖,并在一定程度上缓解环境变化导致的脱氮效率下降,是解决这一问题的有效途径。然而如何通过提高厌氧氨氧化颗粒污泥自身的性能,提高厌氧氨氧化系统的抗有机物干扰能力显得尤为必要。
有文称,好氧颗粒污泥和厌氧氨氧化,可算当代污水处理的两个梦幻般的技术。我们在上篇文章《低能耗技术之白话好氧颗粒污泥法》(点击查看)中讨论了一梦,此次我们讨论另一梦--厌氧氨氧化。
推荐理由:自活性污泥法成功用于城市污水处理以来,历经百年,弥久不衰。但随着经济快速发展,大量有机污染物进入水环境,导致水体富营养化、水华现象、蓝藻爆发事件频发。同时为了进一步降低传统活性污泥法能耗、占地面积,提高氮、磷的去除效能和能源回收,颗粒污泥技术应运而生。荷兰代尔夫特理工大
厌氧反应器由于其处理能力高,往往用来处理高浓度有机废水,其在污水系统日常运行中十分重要。在运行厌氧的过程中,经常会遇到颗粒污泥生长过慢、产气不足、跑泥等现象,今天我们就来聊聊这些异常现象的原因以及解决办法。1.厌氧颗粒污泥生长过于缓慢原因:由于营养与微量元素不足;进水预酸化度过高;
厌氧反应器一般都是投加厌氧颗粒污泥的,接种污泥数量大小10-15%。但是很多情况下,环保公司为了省钱,让现场调试人员用活性污泥驯化出颗粒污泥。1、污泥投加量计算当一个厌氧反应器需要进行生物启动时,如果需要处理的有机负荷小于该反应器最大的处理负荷时,可以按照需处理的有机物总量核算出相应的厌
厌氧反应器内颗粒污泥形成的过程称之为颗粒污泥化,颗粒污泥化是大多数UASB反应器启动的目标和启动成功的标志。污泥的颗粒化可以使UASB反应器允许有更高的有机物容积负荷和水力负荷。初次启动是对一个新建的UASB系统以未驯化的非颗粒污泥接种,使反应器达到设计负荷和有机物去除效率的过程,通过这一过
摘要:本文介绍了厌氧膨胀颗粒污泥床(EGSB)的构造与工作原理,指出了EGSB反应器的优缺点,并总结了其在废水处理中的研究现状。关键词:厌氧膨胀颗粒污泥床(EGSB);废水处理;工作原理;研究引言厌氧膨胀颗粒污泥床(ExpandedGranularSludgeBed,简称EGSB)是由荷兰Wageningen农业大学的Lettinga等人
一、在培养厌氧颗粒污泥时必须注意以下几点:1、营养元素和微量元素在当废水中N、P等营养元素不足时,不易于形成颗粒,对于已经形成的颗粒污泥会发生细胞自溶,导致颗粒破碎,因此要适当加以补充。N源不足时,可添加氮肥、含氮量高的粪便、氨基酸渣及剩余活性污泥等;P源不足时,可适当投加磷肥。铁、
关键词:微区;一级;部分硝化;厌氧氨氧化;颗粒污泥摘要:一级部分硝化-anammox(PN-A)工艺被认为是一种低成本脱氮的有效工艺。本文研究了不同粒径的颗粒在一级PN-A反应器中的脱氮性能。颗粒污泥的总自养脱氮率(TANRR)随粒径的增大而增大,粒径大于500μm的颗粒污泥的TANRR达到0.14kgN/kgVSS/d。
根据污泥的活性不同,有的颗粒污泥卖1200~1400元/吨,而有的只能卖到500~600元/吨;价格相差一倍多。那么如何判断污泥的活性,如何买到质量可靠的厌氧污泥呢?今天,我们就和大家来聊聊如何判断厌氧颗粒污泥活性的话题。一、厌氧颗粒污泥的性能可以通过以下七个方面进行判断:1.颜色活性良好的厌氧颗粒
升流式厌氧反应器(UASB)中废水通过布水装置依次进入底部的污泥层和中上部污泥悬浮区。与其中的厌氧微生物进行反应生成沼气,气、液、固混合液通过上部三相分离器进行分离,污泥回落到污泥悬浮区,分离后废水排出系统,同时回收产生的沼气。注:常规的UASB没有外循环泵(在水力负荷特别低,造成上升流
厌氧出水中高浓度溶解甲烷是制约厌氧污水处理工艺实现碳中和的主要原因之一。对溶解甲烷进行高效回收再利用是降低厌氧工艺碳排放、实现污水处理过程碳中和的关键技术环节。传统甲烷回收技术在甲烷回收过程中会发生水蒸气的同向扩散,导致回收气体中水蒸气含量较高,降低了甲烷的利用价值。本文针对这一
近日,中国科学院重庆绿色智能技术研究院提出一种面向能量回收和物质回收的新型污水处理工艺。相关研究成果以Integratedanaerobicandalgalbioreactors:apromisingconceptualaltrnativeapproachforconventionalsewagetreatment为题,发表在BioresourceTechnology上。
近日,东华大学环境科学与工程学院陈小光副教授团队在环境领域著名学术期刊WaterResearch上发表了题为“ApplicationofaSpiralSymmetricStreamAnaerobicBioreactorfortreatingsalineheparinsodiumpharmaceuticalwastewater:Reactoroperatingacteristics,organicsdegradationpathwayandsalttolerancemechanism”的研究论文。
厌氧反应器中有时会产生大量泡沫,泡沫呈半液半固状,严重时可充满气相空间并带入沼气管道,导致沼气系统的运行困难。
前段时间,随着“碳中和”、“光伏”等热词的出现,带起了一股节能减排的潮流。水处理行业自然也是响应国家号召,不断尝试新模式、新工艺。
工业废水具有广泛的来源和类型。随着工业生产技术的进步,工业废水中的成分也变得多样化。其中,高需氧污染物和有毒污染物使工业废水的特征反映出为三方面:高浓度,高氨氮,难以降解。
一、什么是水解酸化工艺?厌氧生物反应包括水解、酸化和甲烷化三个大的阶段,将反应控制在水解和酸化两个阶段的反应过程,可以将悬浮性有机物和大分子物质(碳水化合物、脂肪和脂类等)通过微生物胞外酶水解成小分子,小分子有机物在酸化菌作用下转化成挥发性脂肪酸的过程。在这一过程中同时可以将悬浮
一、厌氧生物处理的基本原理厌氧生物处理,就是利用厌氧微生物的代谢特性,将废水中有机物进行还原,同时产生甲烷气体的一种经济而有效的处理技术。废水厌氧生物处理技术(厌氧消化),就是在在无分子氧条件下,通过厌氧微生物的作用,将废水中的各种复杂有机物分解转化成甲烷和二氧化碳等。厌氧与好氧过
厌氧反应器由于其处理能力高,往往用来处理高浓度有机废水,其在污水系统日常运行中十分重要。在运行厌氧的过程中,经常会遇到颗粒污泥生长过慢、产气不足、跑泥等现象,今天我们就来聊聊这些异常现象的原因以及解决办法。1.厌氧颗粒污泥生长过于缓慢原因:由于营养与微量元素不足;进水预酸化度过高;
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!