登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
1991年,Pitman等人提出Johannesburg(JHB)工艺,该工艺是在A2/O工艺到厌氧区污泥回流路线中增加了一个缺氧池(见图9),来自二沉池的污泥可利用33%左右(进水分配可调)进水中的有机物作为反硝化碳源去除硝态氮,以消除硝酸盐对厌氧池厌氧释磷的不利影响。
其实这两个工艺是一样的,只是叫法不同。在设计中A+A2/O工艺也会设计多点进水,毕竟碳源的有效分配是关键。
4、UCT工艺
A2/O工艺的回流污泥中很难保证不含有硝氮,为了彻底排除在厌氧池中硝氮的干扰,南非开普敦大学于1983年开发了UCT工艺(见图10),将污泥回流至缺氧区,并增加了从缺氧段至厌氧段的缺氧混合液回流,使污泥经缺氧反硝化后再回流至厌氧区,减少了回流污泥中的硝酸盐含量,尽量的避免了硝态氮对厌氧释磷的影响,同时在该工艺总存在反硝化除磷现象。但当进水碳氮比较低时缺氧池不能实现完全反硝化,仍有一部分硝氮回流到厌氧区对厌氧释磷产生不利影响。
书本上给出的设计参数:厌氧区HRT 1-2h;缺氧区HRT 2-4h;好氧区HRT 4-12h;污泥回流比80%-100%;缺氧回流比200%-400%;硝化液回流比100%-300%。(以上数据仅为参考,在设计时需要根据实际水质进行设计。)
5、MUCT工艺
与A2/O工艺相比,UCT工艺在适当的COD/KTN比例下,缺氧池的反反硝化可使厌氧池回流液中的硝氮含量接近于零。当进水COD/KTN较低时,缺氧池无法实现完全的脱氮,导致有一部分硝氮随缺氧回流进入厌氧池,因此又产生了改良型UCT工艺—MUCT工艺(见图11)。
MUCT工艺有两个缺氧池,第一个缺氧池接受二沉池回流污泥,后一个缺氧池接受好氧池硝化液回流,使污泥的脱氮与混合液的脱氮完全分开,进一步减少硝酸盐进入厌氧池的可能性。
该工艺的主要目的是优化除磷效果,第二个缺氧池进水中含有一定量的碳源,该部分碳源反硝化速率较高,在该部分碳源消耗殆尽后,还可进行内源呼吸反硝化,虽然反硝化速率较低,但可进一步提高TN的去除率。
6、Bardenpho工艺系列
6.1 Bardenpho工艺(两级AO工艺)
Barnard(1974)开发的Bardenpho工艺属于早期生物脱氮(除磷)工艺,其目的是不投加外部碳源的情况下脱氮率达到90%以上。如图12所示,在第一个缺氧段,来自硝化段的混合液内回流中含有大量的硝氮,在第一个缺氧段中利用原水中的碳源作为电子供体,进行反硝化,在该段去除的硝氮约占70%(根据设计停留时间的不同,去除率也不相同)。BOD去除、氨氮氧化和磷的吸收都是在硝化(第一个好氧池)段完成的。第二缺氧段提供足够的停留时间,通过混合液的内源呼吸进一步去除残余的硝氮。最终好氧段为混合液提供短暂的曝气时间,以降低二沉池出现厌氧状态和释磷的可能性。
6.2 五段Phoredox工艺(简称为Phoredox工艺)
由于发现Bardenpho工艺中混合液回流中的硝氮对生物除磷有非常不利的影响,通过Bardenpho工艺的中试研究,Barnard(1976)提出真正意义上的生物脱氮除磷工艺流程(见图13),即在Bardenpho工艺前段增设一个厌氧区。这一工艺流程在南非称为五段Phoredox工艺(简称为Phoredox工艺),在美国称之为改良型Bardenpho工艺。改良型Bardenpho工艺通常按低污泥负荷(较长污泥龄)方式设计和运行,目的是提高脱氮效率。
五段Phoredox工艺使用的SRT比A2/O工艺更长(10-20d),其他设计参数为:厌氧区 HRT=0.5-1h;第一缺氧区HTR=1-3h;第二缺氧区HRT=2-4h;第一好氧区HRT=4-12h,第二好氧区HRT=0.5-1h;污泥回流比为50%-100%;混合液回流比为200%-400%。(以上数据仅供参考,具体设计请根据水质进行变动。)
6.3 3段改良Bardenpho工艺(或A2/O工艺)
测试表明,五段Phoredox工艺并不能将硝酸盐含量降低至零,与第一缺氧区相比,第二缺氧池因为采用内源呼吸反硝化导致单位容积反硝化速率相当低。第二缺氧池的低效促使Simpkins和McLaren(1978)提出,在某些情况下可取消第二缺氧池,适当加大第一缺氧池,以获得最大的反硝化处理效果和最低的回流污泥硝酸盐浓度,即3段改良Bardenpho工艺(见图13),也就是目前常用的A2/O工艺。
7、约翰内斯堡(Johannesburg)工艺
本工艺源自南非约翰内斯堡,为UCT变型工艺,该工艺(见图14)的主要目的是尽量减少污泥回流中的硝氮进入厌氧池,提高较低进水浓度废水德尔处理效率(其实脱氮工艺就是碳源的合理分配问题,在不考虑反硝化除磷的情况下,低COD废水,除磷量越多,反硝化脱氮越差,关键是看操作人员如何取舍)。回流活性污泥直接进入缺氧池,该池有足够的停留时间利用内源呼吸去还原污泥中携带的硝氮,然后再进入厌氧区进行释磷反应。(题外话,这个工艺在有些资料上给归为JHB工艺,我认为知道工艺的原理就行,有些问题没必要去纠结。)
8、PASF工艺
针对A2/O工艺中各菌群间污泥龄需求矛盾的问题,近年来有很多研究提出将活性污泥法和生物膜法相结合(非泥膜共存工艺)以缓解这一矛盾。这时系统中就存在两类菌群:短泥龄悬浮活性污泥和长龄生物膜上附着的菌群,这样能很好的解决硝化细菌与聚磷菌间的泥龄矛盾。在此基础之上发展的工艺为PASF工艺,(见图15)。该工艺分为前后两段,前段采用活性污泥法,主要包括厌氧、缺氧、好氧、二沉等;后段采用生物膜法,主要采用曝气生物滤池或者加装填料的生物膜池。
该工艺中硝化作用主要集中在曝气生物滤池内,大量的硝化反应在二沉池之后完成,避免了污泥回流携带硝氮对厌氧释磷的影响。另外硝化菌和聚磷菌的分开更有利于营造最适宜各类菌群生长的环境。该工艺中,菌群分开专性较强,可以缩短各反应器的停留时间。同时,在前段活性污泥工艺中释磷菌在缺少好氧除磷的情况下,反硝化除磷菌(DPB)可以大量富集从而产生反硝化除磷反应,节省碳源、节省能耗。
该工艺在设计中,好氧池起到降低污泥沉降比、进一步降低BOD(不影响硝化反应)的功能,几乎不参与硝化反应,所以该池停留时间可以很短(1-2h)。
9、Dephanox工艺
Wanner(1992)首次提出Dephanox双污泥反硝化脱氮除磷工艺雏形(见图16)。
所谓双污泥系统就是硝化菌独立于反硝化除磷菌(DPB)而单独存在于固定膜生物反应器中。该工艺解决了聚磷菌和反硝化菌竞争碳源的问题(参照反硝化除磷原理),同时也巧妙的解决了活性污泥系统培养硝化菌需要的较长SRT这一不利条件。
在该工艺中,含DPB回流污泥首先在厌氧池完成释磷和储存PHB,经过快沉池分离后,富含DPB的污泥超越固定膜反应器至缺氧池,含氨氮的上清液直接进入固定膜反应器,进行好氧硝化,产生的硝化液流入缺氧池后与DPB污泥接触,完成反硝化除磷反应。由于DPB污泥没有经过好氧池,所以它体内的PHB几乎全用于反硝化吸磷作用。因DPB每吸收1份的正磷酸盐就需要7份的NO3--N,故而在污水中N/P低于7时,就意味着缺氧池中硝氮含量不足导致不能彻底除磷,因此需要在缺氧池后增加再曝气池,从而保证TP的稳定达标。
其实该工艺还有一定的缺陷,比如:①厌氧池中无法完全吸附有机物,导致固定膜反应器进水中携带有BOD,一方面抑制硝化反应,另一方面造成有机物的浪费和能耗的增高;②在进水氨氮偏高时,缺氧池中反硝化除磷菌不能彻底的去除硝氮,导致出水TN的升高。
3、总结
以上工艺是比较常规的脱氮除磷工艺,一些衍生工艺或者不常见的工艺就不在此一一列举了,如果有兴趣的话,可以自己查一下资料。如:VIP、BCFS、Enbnras、OCO、A2N-SBR、SBR、MSBR、CAST以及A2/O工艺衍生的工艺等等,这些工艺都是基于脱氮除磷原理产生的。
笔者认为脱氮除磷前文所述的工艺,可归结为碳源的分配(除反硝化除磷工艺外),每个工艺都有其优点,所以不能说哪个工艺最好,就看其适不适应进水水质(不考虑操作水平)。
现在环保要求越来越严,对于不少污水厂因为TN问题,给生化池中投加大量的碳源,来满足出水TN的要求,针对于这种污水厂来说,可以不用考虑生物除磷,毕竟生物除磷的成本比化学除磷的高的太多。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近日,由江苏交建公司承建的长泾第一污水处理厂(一期)工程项目最大单体构筑物——“A/O池及鼓风机组”主体结构顺利完工。该项目位于江苏省江阴市长泾镇,总占地面积约69亩,工程建设内容主要包含污水处理构筑物、设备安装及配套管网等。本次完工的“A/O池及鼓风机组”为厂区内最大单体构筑物,结构尺
近日,金凤污水处理工程顺利通过竣工验收,为建转运奠定了基础。竣工验收会现场金凤污水处理工程位于重庆高新区新凤大道,污水厂总用地面积35071平方米,项目设计总规模为4万立方米/日,本项目为一期工程,建设规模为2万立方米/日。污水处理采用具有生物脱氮除磷功能改良型A2/O生物池工艺,深度处理采
1月10日至11日,中铁一局八公司承建的重庆西永污水处理厂三期扩建项目和重庆金凤污水处理厂项目顺利通过竣工验收。西永污水处理厂三期扩建工程位于渝遂高速西侧的雷家坡附近,总规模达6万立方米/天。项目采用具有生物脱氮除磷功能的改良型生物池工艺,出水水质达到梁滩河流域城镇污水处理厂主要水污染
12月19日,山西临汾吉县黄河流域生活污水处理厂建设项目工程总承包(EPC)中标候选人公示,第一中标候选人是山西天昌居建筑工程股份有限公司、中铁城际规划建设有限公司联合体,投标报价12489.51万元。本项目日处理规模为1.2万m3/d,总用地面积为3.2ha,净用地面积为2.4ha。污水处理工艺为采用增强生物
北极星水处理网获悉,太原北郊污水处理厂一期改造主体工程已于近日完工,具备通水条件,正在进行最后的道路和园林绿化等收尾工程。工程完工后,该厂的污水处理能力将提升一倍,由原先的每日4万吨提升至每日8万吨。北郊污水处理厂是华北地区第一座污水处理厂,建于1959年,服务范围包括上兰村至赵庄、滨
污水处理行业碳排放量占全社会总排放量的1%~2%,污水处理减少碳排放量有助于我国“双碳”目标的实现。污水处理碳排放主要来源于污水处理过程产生的温室气体直接排放,以及电能消耗和药剂消耗产生的间接排放。目前,我国已开展污水处理厂碳排放情况初步分析,城镇污水处理行业温室气体排放的核算及减排已
生物脱氮除磷(BiologicalNutrientRemoval,简称BNR)是指用生物处理法去除污水中营养物质氮和磷的工艺。经过几十年的发展,脱氮除磷工艺演变出了多种工艺和工艺变种,为我们选择污水处理技术路线,提供了很多种选项。一、A2/O工艺1、厌氧池图1为传统的A2/O工艺流程,首段为厌氧池,本池的主要作用为释
序批式间歇活性污泥(SBR)工艺具有占地省、运行方便灵活等优点,但存在脱氮除磷效率不高、沉淀阶段直接出水水质不稳定等问题,无法满足高排放标准。随着国家城市水环境提升、黄河流域高质量发展等行动计划的加速,污水处理厂出水需要由一级B提标至一级A或更高标准排放,SBR工艺的污水处理厂均面临提标改造。
选取太湖流域3座GB18918-2002一级A排放标准的城镇污水处理厂,开展预处理单元跌水复氧问题研究。监测结果表明,每次跌水后通常形成3mg/L以上的溶解氧增量,跌水所形成的溶解氧在后续输水管道、渠道或池体内消耗相应的有机物。预处理单元多次跌水复氧和耗氧将导致形成5~10mg/L,甚至更高的碳源损失,对
上个月,美国水研究基金会(WRF)公布了其2022年度PaulL.Busch水业创新奖(下文简称PLB奖)的得主,来自堪萨斯大学的BelindaSturm教授获此殊荣。PLB奖已设立超过20年,过去两年的PLB奖均由华人获得,包括美国范德堡大学的林士弘教授以及普林斯顿大学任智勇教授。该奖以WRF前主席PaulBusch命名,以纪念他
在上个月的《水星漫谈》里,小编介绍了一篇WEFTEC的杂志《WaterEnvironmentTechnology(WET)》的文章,讲的是低C/N的生物脱氮除磷案例。除了案例之外,文中的图片也吸引到小编的注意。小编发现,文中污水厂的照片来自一个PaulCockrellPhotography的工作室。在此之前,小编已经在其他地方看到过此人名字
近日,中诚环境成功签约目前国内最大规模的7.5万吨污水硫自养脱氮提标项目。此次签约标志着中诚环境在环保行业的技术实力与行业地位再上新台阶,也为污水处理领域的零碳脱氮技术创新和应用奠定了坚实的基础。硫自养脱氮技术:国内最大规模应用该污水厂7.5万吨污水硫自养脱氮提标项目是目前国内单体规模
2025年1月15日,深沪污水处理厂提质增效改造项目签约仪式在晋江金融广场18楼会议室举行。福建省晋江水务集团有限公司党委书记、董事长洪凤腾及领导班子成员、浙江永续环境工程有限公司董事长郑勇生一行参加活动。仪式上,福建省晋江水务集团有限公司党委书记、董事长洪凤腾致辞。他指出水务集团作为晋
9月13日下午,广东省环保研究总院与广业环保大湾区区域中心在南沙区四涌西水质净化厂举办水处理研究基地揭牌仪式。这是广东省环保研究总院继与广业环保湛江市霞山污水处理厂共建水处理研究基地后,与广业环保共建的第二个水处理研究基地。此次合作充分发挥广东环保集团“全产业链”优势,实现内部企业
【社区案例】清理了一下硝化液(内)回流泵,清堵完成后处理效率下降比较多,之前氨氮0总氮20以下,现在氨氮30总氮50清理内回流泵会导致内回流量的提高,提高内回流影响氨氮,目前笔者遇到的只有破坏缺氧环境这种情况,所以,帖子内出现的问题的大概率就是内回流携带过多DO进入缺氧池,从而导致异常情
近日,山西省朔州市生态环境局对朔州城发生活污水处理有限公司氨氮超标环境违法行为进行行政处罚!氨氮超标0.016倍,污水厂被罚26万元行政相对人名称:朔州城发生活污水处理有限公司违法事实:经调取你单位2023年12月12日至12月17日废水直接排放口水污染源自动监控系统数据采集传输仪主要污染物COD、氨
【社区案例】一级A排放标准,目前出水接近临界值(但总磷很低)请教一下有没有老师知道怎么处理?从描述上看,大概率是营养比失衡导致的,进水CNP比的失衡会导致污水系统的诸多问题,例如污泥膨胀、出水超标等问题,而且是无法通过改变操作条件来弥补的,需要将CNP比调整相应的比例,才能解决,本文将从
碳源投加的计算公式的介绍有很多,但是有些小伙伴反映利用公式算出来的值是负数。其实碳源的计算万变不离其宗,只是很多文章照搬前人留下的公式,没有自己的思路或者讲解,让很多人看不懂,碳源投加核心其实就是思路的正确!1、碳源投加计算为什么是负数?1、计算公式选择错误计算碳源的投加量,选对计
近年来,污水处理排放标准越来越高,尤其是TN已经脱离了劣五类水标准的低级趣味,比肩三四类水的标准了,因市政污水低碳高氮的水质特点,在采用常规脱氮工艺时无法满足缺氧反硝化阶段对碳源的需求,导致TN超标,所以投加碳源是污水处理厂解决这类问题重要且唯一的手段。为什么乙酸钠是最好的碳源?对于
在脱氮工艺中氨氮转化成氮气有很多的途径,也存在很多难以控制的中间过程及中间产物,恰恰是这些难控制的中间过程决定了最新的脱氮工艺的研究方向,本文将介绍一下短程硝化及短程反硝化的内容!什么是短程硝化?废水生物脱氮,一般由硝化和反硝化两个过程完成,而硝化过程分为氨氧化阶段和亚硝酸盐氧化
北京排水集团建设的国际上第一座城市污水厌氧氨氧化项目日前通过技术成果鉴定。作为北京市重大科技项目,该项目是国际上率先建成并成功运行的一座典型的城市污水厌氧氨氧化示范工程,研究成果达到国际领先水平。据悉,该项目设计规模为7200立方米/天,自2019年投入运行后,经过3个冬季低温期考验,成功
【社区案例】在计算的时候计算格式中乙酸钠cod当量0.78,但是在实际运行过程中我们投加的乙酸钠cod当量是20万。这两个在运用到实际过程的时候该怎么理解,该怎么计算药剂投加量。同一种碳源COD当量数值差距很大,原因就是单位的不同,碳源厂家给的单位一般都是mg/Kg或者mg/L,换算一下,纯的乙酸钠COD
大力发展二氧化碳捕集、利用与封存(CCUS/CCS)产业,是未来我国实现“双碳”目标、保障能源安全的战略选择和必然路径。近年来,中国石油积极践行绿色低碳发展战略,以国务院国资委“百大工程”中国石油CCUS重大示范工程项目为依托,持续加强CCUS领域应用基础研究,大力推进关键技术攻关和工业化应用,
绿色工厂拔地而起,新能源汽车等产业加速布局……作为海南自贸港的重要窗口,海口国家高新区大力培育以绿色为底色的新质生产力,降碳、减污、扩绿与经济增长协同推进,展现出绿色发展新气象。绿色园区建设引领发展2023年12月,海口国家高新区成功入选生态环境部首批城市和产业园区减污降碳协同创新试点
4月1日,伴随新建碳捕集装置入口阀缓缓打开,标志着CPECC西南分公司承建的国内首个CCUS-EGR先导试验工程——卧龙河气田茅口组气藏CCUS-EGR先导试验工程(引进分厂)碳捕集装置调试成功。作为国内首个天然气净化厂尾气碳捕集工业化项目,同时也是国内首个将CO用于回注驱气的示范项目,其碳捕集装置是国
2024年中国磷酸铁锂正极材料行业呈现出如下特点:1)加工费和价格触底,2025年初触底回升;2)高性能磷酸铁锂材料出货快速起量;2)在正极材料中占比进一步扩大。1、加工费和价格触底,2025年初价格开始回升。高工产研锂电研究所(GGII)数据显示,2024年磷酸铁锂正极材料价格低于4万元/吨,部分低端产
近日,河南洛阳印发《洛阳市减污降碳协同创新试点建设实施方案》。文件提出,到2025年底,基本形成符合减污降碳协同增效的发展格局和高效、清洁、低碳的产业布局,实现落后产能应退尽退,工业企业绿色化、智能化水平进一步提高,能源、资源循环利用体系初步建立。全市煤炭消费占比降至60%以下,主城区
为深入贯彻落实四川省生态环保产业集团有限责任公司《关于做好2025年一季度“开门红”工作的通知》精神,四川发展环境科学技术研究院有限公司(以下简称“川发环境研究院”或“公司”)落实四川省生态环保集团和公司“稳中求进、以季保年、实干争先”的工作要求,于2025年3月10日,中标高县经开区污水
3月18日,洛阳市人民政府办公室印发洛阳市减污降碳协同创新试点建设实施方案的通知,通知指出,积极支持风能、太阳能发展。推动风电、光伏发电装机成为电力装机增量的主体,构建清洁低碳、安全高效的现代能源体系。打造沿黄百万千瓦级高质量风电基地,采用先进风力发电技术,建设宜阳县、嵩县等风电场
作为智慧能源解决方案领域的先行者,天合光能已率先从光伏产品制造商向光储智慧能源解决方案提供商转型。秉持“以客户为中心,以场景为导向”的理念,通过深度挖掘分布式能源、集中式电站及新场景需求,构建覆盖光储及场景融合、智能微网、虚拟电厂、零碳园区、绿色算力、绿电制氢氨醇等多元场景的解决
近日,中诚环境成功签约目前国内最大规模的7.5万吨污水硫自养脱氮提标项目。此次签约标志着中诚环境在环保行业的技术实力与行业地位再上新台阶,也为污水处理领域的零碳脱氮技术创新和应用奠定了坚实的基础。硫自养脱氮技术:国内最大规模应用该污水厂7.5万吨污水硫自养脱氮提标项目是目前国内单体规模
“‘双碳’目标的达成意义重大。它不仅可以推动国民经济可持续发展,破解资源约束,突破环境瓶颈;还能促进国民经济转型升级,壮大绿色低碳产业,满足人民群众对蓝天白云、绿水青山的优美环境需求。”两会期间,全国人大代表、隆基绿能董事长钟宝申聚焦“绿色低碳”,呼吁加快绿色氢能(以下简称“绿氢
各有关单位:党的二十届三中全会强调:加快经济社会发展全面绿色转型,健全生态环境治理体系和绿色低碳发展机制。推动工业废水处理技术减污降碳、协同增效,对实现生态优先、绿色低碳发展目标有其重要意义。为落实党中央最新部署,响应生态环境部建立新污染物协同治理、多污染物协同减排的有关意见,中
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!