GEM的降解过程可以用准一级反应动力学方程进行拟合:
(1)
(2)
式中, kobs为表观一级反应速率常数(min-1), [GEM]为GEM在某一时刻的浓度(μmol˙L-1), k′为GEM与各种氧化物种的二级反应速率常数(L˙mol-1˙min-1).在热活化过硫酸盐体系中, SO4˙-通常被认为是主要的氧化物种, 然而其他的氧化物种, 比如HO˙等也可能在GEM的降解过程中发挥作用.图 1b为kobs随溶液中过硫酸盐初始浓度的变化情况, 从图中可知, 随着过硫酸盐初始浓度的增加, kobs随之加快, 并且呈现良好的线性关系.这说明GEM的降解速率和溶液中氧化剂的含量关系密切, 并且呈显著正相关.
3.2 温度对GEM降解的影响
温度在热活化过硫酸盐体系降解污染物的过程当中也起着至关重要的作用.本研究考察40~70 ℃之间GEM的降解情况, 结果如图 2a所示.GEM的降解速率常数kobs随温度的升高而显著增加.40 ℃时, GEM的kobs为0.00156 min-1, 而当温度升高到70 ℃时, kobs增加到0.1356 min-1, 几乎增长了87倍.Ji等在用热活化过硫酸盐技术降解Atrazine时, 也发现温度从30 ℃升高到60 ℃时, kobs增长了114倍.随着反应溶液温度的升高, 过硫酸盐的分解速度加快, 反应液中自由基浓度增加, 从而使GEM的降解速率增加.此外, 根据热力学原理, 随着反应温度的升高, kobs也会随之升高.反应温度T和kobs两者之间的关系遵循阿仑尼乌斯方程:
(3)
图 2温度对热活化过硫酸盐降解GEM的影响(pH=7.0, [GEM]0=40 μmol˙L-1, [persulfate]0=1.5 mmol˙L-1)
式中, Ea为反应的表观活化能(J˙mol-1), R为气体常数(8.314 J˙mol-1˙K-1), A为指前因子(min-1), T为绝对温度(K-1).由图 2b可知, lnkobs随1/T的增加而线性减小, 两者之间的关系符合阿仑尼乌斯方程.由式(3)可以计算出反应的表观活化能为133.14 kJ˙mol-1.
延伸阅读:
环保技术人员学习成长交流群
志同道合的小伙伴全在这里
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
版权所有 © 1999-2025 北极星环保网 运营:北京火山动力网络技术有限公司 广告总代理:北京瀚鹏时代科技发展有限公司
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright ©2025 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有