登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
文章最后,我想分享一下我和在自来水处理厂发现了这个COMAMMOX的英国格拉斯哥团队的第一作者,有着副教授头衔的Ameet Pinto的邮件交流。
2016年1月7号,我给刚搬到美国波士顿的他email了一个问题:“May I know how you would interpret the importance of this discovery and its long-term influence in the wastewater industry?” 用粗俗的话解释就是说,你觉得这发现对污水处理有毛影响吗?虽然这个人是研究自来水的…但他的回复和我也算是想到一个点上了——那就是COMAMMOX和ANAMMOX的竞争性。以下是他回复的原文:
Indeed comammox is an exciting discovery and I think will have implications for nitrogen management. From a wastewater perspective, I think for now the focus may be on understanding how comammox may affect short-cut nitrification/denitrification processes and also trying to better understand the interactions between comammox and canonical AOB/AOA and NOB as well as anammox. It is really difficult to say more than this without appropriate experiments involving N balance in these systems.
My particular interest is in drinking water and nitrification is very important. Within the drinking water plant comammox can be a positive influence in terms of ammonia removal, but in the distribution system it may affect the stability of disinfectant residual in chloraminated systems.I am quite interested in this and my group will certainly be focussing on this heavily in the near future. Who know what else will be discovered!
如果你的研究方向和他相似,尽可以跟他联系,他的推特账号是@watermicrobe,email是 a.pinto@neu.edu
本文就这样点到为止。小编不是学霸,若有技术性错误,敬请指正。本文只旨在希望这里给中国同行开一头,让国内科研团队也加入COMAMMOX的研究大军中。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
2015年5月,比利时根特大学的荣誉教授WillyVerstraete和他的学生SilvioMatassa在著名期刊《EnvironmentalScieneTechnology》发表一篇文章,文中他们第一次提出“能量变蛋白质”的概念(Power-to-Protein,简称PtP)。这个“新”概念背后是污水处理的一种脱氮工艺——将氨氮直接转化成微生物蛋白质,跳
氮循环是全球生物地球化学循环的重要组成部分,也是生物圈内基本的物质循环之一。自然界中的氮绝大部分以氮气分子(N2)的形式存在于大气中。N2的化学性质不活泼,常温下很难与其他物质发生反应。此外,大部分生物体无法利用N2进行新陈代谢。因此,N2需要被转化为“活性”氮(如NH3-N),才能被广大生
世界人口日益增长,生产足够的粮食是一个巨大的挑战。在经典的氮循环中,植物会通过固氮作用将氮气转化为用作农业种植的肥料,来生产用于动物消费的蛋白质生产。基于哈柏法(Haber-Boschprocess)的人工合成氮工艺的能耗高,效率低,只有10%转化为可食用蛋白。2015年5月,IWA厌氧专家组成员、比利时根特
目前人类活动对氮循环的干扰,已远大于其他元素,极大地加速了地球生态环境的变化,引发严重的氮循环失衡、氮污染加剧、温室气体排放增多等不良效应。据估算,全球只有约40-60%的氮是通过反硝化生成氮气回到大气中。在全球变暖、污染加剧的双重胁迫下,是否存在新型的氮循环过程,值得我们探究。厌氧氨
2022全国高考卷作文题目:本手,妙手,俗手。作文提示:本手、妙手、俗手是围棋的三个术语。本手是指合乎棋理的正规下法;妙手是指出人意料的精妙下法;俗手是指貌似合理,而从全局看通常会受损的下法。本手是基础,妙手是创造。一般来说,对本手理解深刻,才可能出现妙手;否则,难免下出俗手,水平也
生化反应硝化系统崩溃的几种情况分析及对应的解决办法很多污师在运行中都会遇到氨氮超标的情况,本人不才,在此做一下简单分析。一、硝化系统弱该情况下,主要是硝化菌数量不够,限制了氨氮的硝化。原因很多,比如:1、污泥龄短,硝化菌没有大量富集。解决办法:减少排泥,提高污泥龄(莫要通过投加碳
【社区案例】化工废水,因硝化池更换曝气器和过年放假水温过低造成氨氮去除率大幅降低,年后进水氨氮过高又造成冲击,现在氨氮几乎没有去除率,停止进水一周只投加少量葡萄糖没有什么改善,求各位老师指点一二。缺氧150方,好氧池450方,现在每天投加50公斤葡萄糖,二沉池氨氮接近三百,COD四百,溶解
利用AO法脱氮除磷,必须要达到这两个条件:①为反硝化菌创造活跃的环境,积极除氮;②创造聚磷菌活跃的环境,利用以上两个作用脱氮除磷。同步脱氮除磷,在理论上是可行的,但实际操作上却很困难。
一、曝气生物滤池特点集生物氧化和截留悬浮固体于一体节省后续二次沉淀池和污泥回流,在保证处理效果的前提下使处理工艺简化。曝气生物滤池具有容积负荷高、水力负荷大、水力停留时间短、所需基建投资少、占地面积小、处理出水水质好等特点,又由于曝气生物滤池没有污泥膨胀问题,微生物不会流失,能保
本文将介绍硝化菌培养时应控制的7个重要指标及硝化系统管理的8个运行参数。一、硝化系统的培养硝化菌的培养相对于异养菌来讲比较难,硝化菌的培养过程同时也是污泥的驯化过程。硝化细菌的培养应遵循循序渐进、有的放矢、精心控制的的原则,出水稳定后并逐步增加原水的进水量。每次增加的进水量为设计进
污泥负荷Ns硝化细菌更多的还是在伴随着菌胶团的生存,有机物的去除是先进行碳氧氧化,再进行氮氧化。有机物先通过菌胶团分解氧化生成二氧化碳与水,部分作为自身能量消耗。只有有机负荷降低到一定程度,硝化细菌才开始工作进行硝化反应。对于这个污泥负荷,设计值及经验值一般小于0.15kgBOD5/KgMLss.d
1914年,Arden和Lockett发明了活性污泥法,从那时起污水处理技术的面貌便焕然一新,现代污水处理技术大厦的基石就此建立。Arden和Lockett在早期研究活性污泥法时便注意到了硝化的现象,并试图回收污水中的氨,但并不成功。今天,世界各地污水处理厂的运行过程中经常会遇到二沉池反硝化浮泥的现象,70多
一、采用生物脱氮除磷对水质要求的规定1、污水中有毒害和抑制性物质对生物脱氮除磷有较大影响,硝化菌对毒性物质比较敏感,如重金属、氰化物、三价砷、氟化物、游离氨都会对硝化产生抑制作用。反硝化菌对毒性物质的敏感性比硝化菌低,一般与好氧异养菌相同。厌氧段硝酸盐的存在明显抑制聚磷菌对磷的释
1、泥龄问题作为硝化过程的主休,硝化菌通常都属于自养型专性好氧菌.这类微生物的一个突出特点是繁殖速度慢,世代时间较长.在冬季,硝化菌繁殖所需世代时间可长达30d以上;即使在夏季,在泥龄小于5d的活性污泥中硝化作用也十分微弱.聚磷菌多为短世代微生物,为探讨泥龄对生物除磷工艺的影响,Rensink等(1985年
硝化菌是一类具有硝化作用的自养化能细菌,包括亚硝酸盐菌(AOB)和硝酸盐菌(NOB)两个生理菌群,硝化菌世代周期长,对溶解氧、水温、有毒物质敏感。在常见的污水处理系统的活性污泥中含量较低,但在脱氮过程中起着至关重要的作用,脱氮过程中没有硝化就无法进行反硝化脱氮,因此硝化能力强弱直接关系到城
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!