登录注册
请使用微信扫一扫
关注公众号完成登录
(1)
(2)
(3)
式中:FRR(Relative response factor)为相对响应因子;AC0和AC1为标准样品和所测样品中组分峰面积;AI0和AI1为标准样品和所测样品中内标峰面积;mC0和mC1为标准样品和所测样品中组分质量,g;mI0和mI1为标准样品和所测样品中内标质量,g;n为稀释倍数;V1为所测样品体积,mL;V2为油污土壤萃取液总体积,mL;mT为土壤的质量,g;wT为土壤中组分质量分数,g/g。
1.4 高通量测序及统计分析
将采集的新鲜土壤样品进行脱氧核糖核酸(DNA)提取和高通量测序。采用分光光度计(Nano)进行紫外定量检测总DNA,采用Q5高保真DNA聚合酶进行聚合酶链式反应(PCR)扩增。PCR扩增产物通过2%琼脂糖凝胶电泳进行检测,并采用AXYGEN公司生产的凝胶回收试剂盒对目标片段进行切胶回收。参照电泳初步定量结果,将PCR扩增回收产物进行荧光定量。根据荧光定量结果,按照每个样品的测序量需求,对各样品按相应比例进行混合。最后,采用Illumina MiSeq平台对土壤样品真菌、细菌、古菌群落DNA片段进行双端测序。使用QIIME软件,调用UCLUST这一序列比对工具,对前述获得的序列按照97%的序列相似度进行归并和可操作分类单元(Operational taxonomic unit,OTU)划分,并选取每个OTU中丰度最高的序列作为该OTU的代表序列。使用QIIME软件,获取各样品在门、纲、目、科、属5个分类水平上的组成和丰度分布表。通过主成分分析研究样品Beta多样性,对群落数据结构进行自然分解并通过对样品排序,观测样品之间的差异。
采用Chao1丰富度指数、ACE丰富度指数、Shannon多样性指数和Simpson多样性指数来反映其Alpha多样性,使用QIIME软件分别对每个样品计算上述4种多样性指数。使用R软件,对丰度前50位的属进行聚类分析并绘制热图。分析油污土壤微生物群落与土壤烃类组分的相关性,将各样品群落按照门及属水平分别进行整理,分析群落组成受石油污染的影响。
2 结果与讨论
2.1 油污土壤基本性质
图1为油污土壤样品的粒径分布。根据土壤的分类和定名标准[21],YGQ0-20、YGQ20-50、WYC0-20、WYC20-50、LJC0-20为粗砂,LJC20-50为中砂。表1为油污土壤的基本性质。由表1可以看出,YGQ0-20土壤样品含水率最低,仅为1.35%(质量分数),其次为WYC0-20,含水率为14.25%,其余土壤样品含水率均在20%以上。从土壤pH值可以看出,LJC0-20和LJC20-50为弱碱性土壤,其余样品为中性土壤,油污程度对pH值没有明显的影响。WYC0-20土壤样品中油质量分数最高为8.632 g/kg,其次为LJC0-20;YGQ取样点油含量明显低于WYC、LJC两点,YGQ20-50油含量最低;油污土壤样品的油含量与有机质含量呈正比关系。土壤有效磷质量分数为0.6~14.0 mg/kg,全氮质量分数为9~79 mg/kg,且油含量与有效磷含量和全氮含量无明显的相关性。
图1 油污土壤样品粒径分布
Fig.1 Particle size distributions of oil-contaminated soil samples
表1 油污土壤基本性质
Table 1 Properties of oil-contaminated soil samples
油污土壤中烃类组分含量如图2所示。YGQ取样点正构烷烃含量明显低于WYC、LJC两点,烷烃质量分数均低于2.5 μg/g,碳数范围分布在C16~C31,但芳烃质量分数较高,最高达到2.0 μg/g。YGQ取样点C10~C15范围的正构烷烃含量较低,YGQ0-20中C18~C21范围的正构烷烃含量高于YGQ20-50,YGQ20-50中C22~C28范围的正构烷烃含量相对较高。YGQ0-20中芳香烃的种类和含量远大于YGQ20-50,相对含量较高的有萘、菲、芴、蒽和芘,苯、二苯并噻吩和含量较低。YGQ20-50中含有少量的苯、菲、、蒽和芘。WYC取样点C9~C15范围的正构烷烃含量较低,WYC0-20中C16~C21范围的正构烷烃含量明显高于WYC20-50。WYC0-20中芳香烃含量高、种类多,主要为苯、萘、菲、二苯并噻吩、芴、、蒽和芘,其中,菲和芘的含量较高。WYC20-50中碳数范围在C22~C32的正构烷烃含量较高,芳香烃质量分数均低于0.50 μg/g,含有菲、和芘以及少量的萘和蒽。相比YGQ、WYC两点,LJC取样点烷烃质量分数最高(最高超过10 μg/g),但芳香烃质量分数最低(均低于0.32 μg/g)。LJC0-20中正构烷烃碳数范围在C13~C24之间含量较高,且LJC0-20中芳香烃含量也明显高于LJC20-50,苯、萘、菲、和芘含量较高。LJC20-50中碳数范围在C25~C30的正构烷烃含量较高,芳香烃以少量菲、芘为主。
F1—Normal paraffin; F2—Aromatic hydrocarbons
A—Anthracene; B—Benzene; C—Chrysene; D—Dibenzothiophene; F—Fluorene; N—Naphthalene; P—Phenanthrene; I—Pyrene
图2 油污土壤中烃类组分含量分布
Fig.2 Hydrocarbons mass fraction in oil-contaminated soil samples
(a) YGQ-F1; (b) YGQ-F2; (c) WYC-F1; (d) WYC-F2; (e) LJC-F1; (f) LJC-F2
综上所述,可以认为油污土壤中正构烷烃碳数范围主要分布在C13~C32,同一取样点上层土壤中碳数范围在C16~C21的正构烷烃含量较高,而下层土壤中C22~C30的正构烷烃含量较高。上层土壤中芳香烃的种类和含量明显高于下层土壤。
2.2 油污土壤中微生物群落多样性指数分析
2.2.1 油污土壤的微生物群落丰富度及多样性
6个土壤样品通过质量筛查,且Index完全匹配时共获得272199条有效ITS序列、227067条有效细菌序列、210468条有效古菌序列。将以97%的序列相似度作为OTU划分和分类地位鉴定,此次测序结果可划分为845个真菌OTU、5444个细菌OTU及451个古菌OTU(分类至属水平)。图3为不同油含量的油污土壤中微生物群落的OTU数量。从图3可以看出,微生物群落OTU数量随着油污土壤油含量增加呈先增加后减少的趋势,这说明石油为微生物的生长提供了丰富的碳源,但当土壤中油质量分数(即污染程度)高于8.632 g/kg时,则会抑制微生物生长。
图3 不同油含量的油污土壤中微生物群落的可操作分类单元(OTU)数量
Fig.3 Operational taxonomic unit (OTU) number of the microbial communities in the oil-contaminated
soil samples with different oil contents
对于微生物群落而言,有多种指数来反映其Alpha多样性。常用的度量指数主要包括侧重于体现群落丰富度的Chao1指数和ACE指数,以及兼顾群落均匀度的Shannon指数和Simpson指数。一般而言,Chao1或ACE指数越大,表明微生物群落的丰富度越高;Simpson指数降低,表明微生物群落的多样性降低,Shannon指数越高,表明微生物群落的均一性越高。表2为不同油污土壤样品的真菌、细菌、古菌群落的多样性指数。根据Chao1或ACE指数可知,油污土壤样品真菌群落的丰富度由大到小顺序为LJC0-20、YGQ20-50、 LJC20-50、WYC20-50、 WYC0-20、YGQ0-20;其细菌群落的丰富度由大到小顺序为YGQ20-50、 LJC20-50、 WYC20-50、WYC0-20、LJC0-20、YGQ0-20;其古菌群落的丰富度由大到小顺序为LJC0-20、LJC20-50、WYC20-50、YGQ20-50、WYC0-20、YGQ0-20。根据Shannon和Simpson指数可得,油污土壤样品真菌群落的多样性由大到小顺序为LJC20-50、YGQ20-50、LJC0-20、WYC20-50、WYC0-20、YGQ0-20;其细菌群落的多样性由大到小顺序为YGQ20-50、LJC0-20、LJC20-50、WYC20-50、WYC0-20、YGQ0-20;其古菌群落的多样性由大到小顺序为LJC0-20、WYC20-50、LJC20-50、YGQ20-50、YGQ0-20、WYC0-20。可以看出:YGQ0-20和WYC0-20样品群落的丰富度和多样性均较差;这可能是因为YGQ0-20含水率过低(质量分数1.35%),影响了微生物群落的丰富度和多样性;WYC0-20土壤样品中油质量分数过高(8.632 g/kg),抑制了微生物生长,从而影响了其丰富度和多样性。
2.2.2 油污土壤的Beta多样性分析
使用R软件对加权(Weighted)的UniFrac距离矩阵进行非度量多维尺度分析(NMDS),通过二维排序图描述群落样品的结构分布(结果如图4所示),每个点代表1个样本,不同颜色的点属于不同样本(组),2点之间的距离越近,表明2个样本之间的微生物群落结构相似度越高,差异越小。从图4(a)可以看出,对于真菌群落,WYC和LJC取样点分布较为分散,而YGQ0-20和YGQ20-50距离较近,表明两者的群落构成差异较小。从图4(b)可以看出:对于细菌群落,油含量最低的YGQ20-50距离其他取样点较远,群落构成的差异也较大;而WYC0-20、WYC20-50、LJC0-20和LJC20-50油含量相近,群落相似性也较高。由图4(c) 可以看出,对于古菌群落,油含量最低的YGQ20-50和最高的WYC0-20距离较远,群落结构差异性也较大。由此可以认为,油污土壤中微生物群落的Beta多样性与其受石油污染程度有一定的关系,油含量相近的油污土壤样品,其微生物群落结构的相似度较高。Natsuko等[22]釆集美国不同油污地区的土壤进行微生物群落结构调查,发现油含量相近的土壤微生物种群差异不大。贾建丽等[23]分别采集中国不同地区的5个油田的油污土壤,研究微生物群落结构,也得出了相似的结果。
表2 不同油污土壤样品真菌、细菌、古菌群落的多样性指数
Table 2 Diversity index of fungi, bacteria, archaea community in different oil-contaminated soil samplesOTU—Operational taxonomic unitNMDS—Nonmetric multidimensional scaling
图4 油污土壤中微生物群落的NMDS分析
Fig.4 NMDS analysis of microbial community in oil contaminated soil
(a) Fungi; (b) Bacteria; (c) Archaea
2.3 油污土壤微生物群落结构分析
图5为油污土壤微生物群落在门水平上的相对丰度(土壤微生物群落相对丰度=单个物种的绝对丰度/整个种群丰度总量)。从图5(a)可以看出:土壤真菌群落主要隶属于子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、壶菌门(Chytridiomycota)等9个门;其中,子囊菌门的相对丰度最大,为54.4%~83.2%;其次为担子菌门,相对丰度为6.8%~35.5%。已有研究认为能够降解PAHs的真菌一般多见于子囊菌门、担子菌门等[24]。陈锐等[15]在研究安塞石油污染区土壤真菌群落结构分析时同样发现,在门水平上子囊菌门和担子菌门为土壤样品的绝对优势菌群。
由图5(b)可见,土壤样品细菌群落主要隶属于变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidetes)、螺旋体菌门(Sacibacteria)、蓝细菌门(Cyanobacteria)、硝化螺旋菌门(Nitrospirae)、疣微菌门(Verrucomicrobia)、浮霉菌门(Planctomycetes)、芽单胞菌门(Gemmatimonadetes)、厚壁菌门(Firmicutes)等20个门。其中,相对丰度最高的为变形菌门,为44.8%~79.5%。梁建芳等[13]通过研究表明,克拉玛依油田石油污染土壤细菌主要属于变形菌门、放线菌门、厚壁菌门、拟杆菌门和浮霉状菌门。刘臻证明厚壁菌门和变形菌门可以石油烃为碳源进行代谢,蓝细菌门在石油污染的水体中能够很好地利用石油烃作为碳源并维持生长[25]。在对大港油田土壤模拟生物修复过程中同样发现变形菌门、厚壁菌门、拟杆菌门、绿弯菌门、放线菌门和酸杆菌门是优势菌门,相对丰度为84.47%~94.66%[26]。
由图5(c)可见,土壤样品古菌群落主要隶属于奇古菌门(Thaumarchaeota)、广域古菌门(Euryarchaeota)、深古菌门(Bathyarchaeota)、厚壁菌门、拟杆菌门等13个门。相对丰度最大的为奇古菌门,为28.3%~93.1%;广域古菌门的相对丰度为0.2%~47.3%。宋震等[27]研究表明,原油和含油废水污染土壤样品中的优势菌门是广域古菌门,含油废水和原油都促进了土壤中广域古菌门的生长和发育,而石油污染程度较轻的土壤样品中,优势菌门是奇古菌门。本研究中同样发现,石油污染程度较重的WYC0-20、LJC0-20及LJC20-50土壤样品中,广域古菌门相对丰度明显高于其他样品,而污染程度较轻的YGQ0-20和YGQ20-50样品奇古菌门的相对丰度更大。
图5 油污土壤微生物群落门水平相对丰度
Fig.5 Relative abundance of the microbial community phyla in oil contaminated soil samples
(a) Fungi; (b) Bacteria; (c) Archaea
2.4 油污土壤微生物属水平上的物种聚类分析
图6为不同油污土壤中微生物属水平上的物种聚类图(红色代表在对应样品中丰富度较高的属,绿色代表丰富度较低的属)。石油污染程度和土壤深度变化会使土壤中优势菌群发生变化,这是由于土壤深度变化和土壤石油污染导致土壤中氧含量、压力以及营养元素发生了变化[25]。从图6(a)可以看出:污染程度最重的WYC0-20土壤样品中真菌踝节菌属(Talaromyces)、Phaeoacremonium、柱霉属(Scytalidium)、丝孢菌属(Scedosporium)、赭霉属(Ooconis)、Sagenomella、念珠菌属(Candida)相对丰度较大;这些菌属在污染程度较轻的YGQ0-20和YGQ20-50土壤样品中相对丰度较低。而YGQ0-20中丰度较大的刺杯毛孢属(Dinemasporium)、青霉属(Penicillium)、外瓶霉属(Exophiala)以及YGQ20-50中丰度较大的尾梗霉属(Cercophora)、柄孢壳属(Zopfiella)、镰状瓶霉属(Harpophora)在WYC、LJC土壤样品中丰度较低。WYC0-20土壤样品中踝节菌属的相对丰度由0提高到31.6%,而青霉属的相对丰度显著降低,由44.9%降至0.1%。这说明青霉属可在石油污染环境中生存,但污染程度过高(土壤中油质量分数8.632 g/kg)时不利于其生存。研究人员从油污土壤或海洋环境中分离出的具有原油降解能力的真菌中就包括踝节菌属[28]。另外,有报道称曲霉属(Aspergillus)对原油中C11~C20的烃链有较好的降解作用,外瓶霉属可降解甲苯、多环芳烃类污染物,青霉属和茎点霉属(Phoma)可降解PAHs,念珠菌属对正构烷烃降解效果较好[24,29]。
从图6(b)可以看出,对于细菌,污染程度较轻的YGQ0-20中丰度较大的鞘脂单胞菌属(Sphingomonas)、假黄单胞菌属(Pseudoxanthomonas)、玫瑰单胞菌属(Roseomonas)、甲基杆菌属(Methylobacterium)、贪铜菌属(Cupriavidus)和YGQ20-50中丰度较大的变异杆菌属(Variibacter)、固氮弓菌属(Azoarcus)在WYC、LJC土壤样品中丰度较低。污染程度最重的WYC0-20中丰度较大的属有寡养单胞菌(Stenotrophomonas)、硫杆菌属(Thiobacillus)、慢生根瘤菌属(Bradyrhizobium)、纤维单胞菌属(Cellulomonas)。其中,寡养单胞菌的相对丰度由0.1%提升到1.9%,而甲基杆菌属由10.7%降到0.3%。肖建军等[30]通过在石油污染的土壤中筛选出寡养单胞菌并进行实验发现,其对甲苯有较好的去除效果。土壤样品中细菌属水平丰度较高的分枝杆菌(Mycobacterium)、假单胞菌属(Pseudomonas)都是能够降解石油烃的细菌菌属[25]。Red represents the genera with high abundance in the corresponding samples, and green represents the genera with low abundance.
图6 油污土壤中群落属水平聚类图
Fig.6 Horizontal cluster diagram of community genera in oil contaminated soil samples
(a) Fungi; (b) Bacteria; (c) Archaea
从图6(c)可以看出,对于古菌,各取样点高丰度交叉菌属较少。污染程度最轻的YGQ0-20中丰度较大的属有甲烷杆菌属(Methanobacterium)、拟杆菌属(Bacteroides)。而污染程度最重的WYC0-20中丰度最高的属有甲烷杆菌属、甲烷八叠球菌属(Methanosarcina)和甲烷囊菌属(Methanoculleus)。其中,甲烷八叠球菌属的相对丰度由5.8%增至37.8%。有文献表明,产甲烷古菌对石油烃具有厌氧生物降解作用[31],甲烷八叠球菌属具有降解C12~C30的长链正构烷烃的能力[32]。
2.5 油污土壤微生物群落与土壤烃类组分的相关性
分析油污土壤中正构烷烃和芳香烃含量与真菌、细菌、古菌属水平微生物群落的关系,对存在显著相关关系(显著水平P<0.05)的群落采用R软件进行相关性分析,结果如图7所示。从图7可以看出:真菌炭疽菌属(Colletotrichum)、细菌节杆菌属(Arthrobacter)、假枝杆菌(Pseudoclavibacter)、古菌盐红菌属(Halorubrum)与烷烃含量呈显著正相关;而真菌柄孢壳属(Zopfiella)、古菌拟杆菌属(Bacteroides)与烷烃含量呈显著负相关性。对于芳香烃,细菌甲基杆菌属(Methylobacterium)与苯、萘、菲、芘、二苯并噻吩含量呈显著正相关性,古菌甲烷八叠球菌属与苯、萘、菲、芘、、二苯并噻吩含量呈正相关性,拟杆菌属(Bacteroides)与蒽、芴含量呈正相关性;真菌腐殖霉属(Humicola)和被孢霉属(Mortierella)与苯、萘、菲、芘、含量呈显著负相关性。
BEN—Benzene; NAP—Naphthalene; PHE—Phenanthrene; PYR—Pyrene; CHR—Chrysene;ANT—Anthracene; FLU—Fluorene; DBT—Dibenzothiophene
图7 油污土壤微生物群落与烃类组分含量的相关性分析
Fig.7 Correlation analysis of microbial community and hydrocarbon components in oil contaminated soil samples
(a) Alkanes; (b) Aromatic hydrocarbons
3 结 论
(1)东营某炼油厂石油污染土壤中细菌、真菌和古菌的群落OTU数量随着土壤油含量的增加先增多后减少,群落结构的Beta多样性指数与土壤油含量有一定相关性,受污染程度相近的土壤样品,其微生物群落结构的相似度较高。
(2)油污土壤样品真菌群落中子囊菌门(Ascomycota)和担子菌门(Basidiomycota)的相对丰度最大;细菌群落中相对丰度最高的为变形菌门(Proteobacteria);古菌群落中相对丰度最大的为奇古菌门(Thaumarchaeota)和广域古菌门(Euryarchaeota)。随着土壤油含量增加,真菌踝节菌属(Talaromyces)的相对丰度由0提高到31.6%;细菌寡养单胞菌(Stenotrophomonas)由0.1%提升到1.9%;古菌群落中甲烷八叠球菌属(Methanosarcina)的相对丰度由5.8%增至37.8%。
(3)微生物群落结构与土壤中烃类组分含量相关性分析表明,真菌炭疽菌属(Colletotrichum)、细菌节杆菌属(Arthrobacter)、假枝杆菌(Pseudoclavibacter)、古菌盐红菌属(Halorubrum)与烷烃含量呈显著正相关性,而真菌柄孢壳属(Zopfiella)、古菌拟杆菌属(Bacteroides)与烷烃含量呈显著负相关性;细菌甲基杆菌属(Methylobacterium)和古菌甲烷八叠球菌属(Methanosarcina)、拟杆菌属(Bacteroides)与芳烃含量呈正相关性,真菌腐殖霉属(Humicola)和被孢霉属(Mortierella)与芳烃含量呈显著负相关。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
在经历政策驱动下的快速发展后,土壤修复行业将进入高质量发展的关键期,修复技术也将逐渐向低成本、低碳、绿色高效以及可持续的修复模式发展,对精细化要求也会越来越高。“十四五”期间石油石化行业环保工作越来越受到重视,含油污泥相关的标准规范也陆续出台,油泥治理工作也将大面积开展。7月13-14
日前,国务院印发了《关于开展第三次全国土壤普查的通知》,决定自2022年起开展第三次全国土壤普查。随着我国经济的快速发展,工业化和城市化快速推进,生活垃圾填埋场及工业固废堆场问题土壤及地下水污染问题日渐显现,对已封场的垃圾填埋场和旧垃圾场进行土壤修复是国家环境保护规划内容的一个重点。
日前,国务院印发了《关于开展第三次全国土壤普查的通知》,决定自2022年起开展第三次全国土壤普查。随着我国经济的快速发展,工业化和城市化快速推进,生活垃圾填埋场及工业固废堆场问题土壤及地下水污染问题日渐显现,对已封场的垃圾填埋场和旧垃圾场进行土壤修复是国家环境保护规划内容的一个重点。
尊敬的各位行业同仁、专家代表:鉴于近期新冠疫情波及多个省市疫情形势仍未明朗,秉持对社会、全体嘉宾、合作伙伴负责的态度,经审慎研究决定,原定于2022年5月30-31日在山东济南举办的“第二届中国国际土壤修复及油泥治理峰会”将延期至2022年8月(具体时间待定)举办,地点不变。感谢各位参会代表长
北极星环境修复网获悉,经河南省市场监督管理局审查批准,河南省石油土壤修复领域第一个地方标准《石油污染土壤修复验收技术规范》于4月7日发布,将于7月5日正式实施。该标准由河南省地矿局提出并归口管理,河南省地质矿产勘查开发局第一地质环境调查院、河南省地质环境生态修复工程技术中心、河南省水
受疫情影响,原定于2022年4月7-8日在山东济南举办的“第二届中国国际土壤修复及油泥治理峰会”将延期至2022年5月30-31日举办,地点不变。2月16日,国务院印发《关于开展第三次全国土壤普查的通知》,决定自2022年起开展第三次全国土壤普查,将用四年时间查明查清全国土壤质量、形状及利用状况,建成土
在“双碳”发展目标、“十四五”规划等政策推动下,结合国家土壤污染防治任务,以及融资环境的持续改善,土壤修复及油泥治理行业将在“十四五”时期迎来关键的发展机遇期。与此同时,随着相关政策完善、技术升级以及行业标准细化,土壤修复及油泥治理相关工艺技术要求也将越发严格,行业壁垒也将明显提
生物修复技术在石油污染治理中的应用研究进展摘要:通过研究不同类型生物修复技术的修复原理和应用特点,对比在土壤石油污染和海洋石油污染环境中的修复效果,旨在更好地了解生物修复技术,并对今后的研究重点进行展望。1石油污染石油工业的快速发展,一方面大力推动了世界经济的进步,而另一方面,石
2022第二届中国国际土壤修复及油泥治理峰会(SRS2022)将于4月7-8日在山东济南举行,为业界同仁搭建一个了解最新政策标准、交流新技术新产品、分享实战项目管理经验、拓展新业务的平台。
北极星环境修复网获悉,近日,山东省环境保护产业协会组织山东省科学院生态研究所(山东省科学院中日友好生物技术研究中心)等单位起草的《石油污染土壤微生物修复技术规范》团体标准已完成征求意见稿。根据《山东省环境保护产业协会团体标准管理办法》的要求,现面向社会公开征集意见和建议。
北极星环境修复网整理了2020年1月1日至2020年2月18日,生态修复行业的一些热点事件,以下事件排名不分先后。1.上海市土壤污染重点监管单位土壤和地下水污染隐患排查工作指南(试行)上海市生态环境局发布了《上海市土壤污染重点监管单位土壤和地下水污染隐患排查工作指南(试行)》,规范了土壤和地下
日前,东方园林与香港MARSHALLENERGYHOLDINGHONGKONGCO.,LIMITED公司签订战略合作协议,双方将共同推进哈萨克斯坦油泥处置项目,为中国实施“一带一路”绿色发展助力。香港MARSHALLENERGYHOLDINGHONGKONGCO.,LIMITED公司主营业务涉及石油天然气工业相关的潜水式燃烧蒸发器、管式换热器等产品的研发、制造
摘要:石油泄漏对环境、经济和社会造成负面影响。有效的修复技术是油污土壤(含油土壤)治理关键,化学修复已经证明可在原位和易地、低成本、环境代价小修复石油污染的土壤(含油土壤)。笔者综述了化学氧化、电动修复等技术原理及应用效果,评价了化学修复技术的优缺点,阐述了化学修复技术的研究热点
摘要:我国的土壤资源在使用方面已经被占用十分严重,长期的生产活动导致大量污染物进入土壤环境,现代化进程中出现化学污染、工业污染等对土壤的负载净化能力造成了巨大压力,土壤的生态面临着严峻的考验。我国政府对土壤污染治理十分重视,为了恢复土壤生态环境,使土壤能够持续为人类提供资源,提出
摘要:针对土壤环境恶化问题,首先分析了土壤修复中微生物技术的应用,然后对油污土壤(含油土壤)改良技术进行深入分析,为保证土壤改良效果,提供技术依据,实现不断提高土壤修复与改良技术水平的根本目标。关键词:土壤;油污土壤;微生物修复;土壤改良引言如今,在工农业生产快速发展的局势下,废
6月24日,胜利油田石油工程技术研究院微生物中心土壤修复项目组技术人员与孤东采油厂对接井场土壤修复试验方案,将于近期开展现场试验。这是微生物技术在驱油领域之外的又一拓展应用。微生物中心土壤修复项目组在油田产出液沉积物生物无害化处置方面,开展了一系列扎实的基础研究和应用研究工作,形成
油气田开发过程中的油井泄漏、原油管线以及储油罐泄漏、海洋溢油等造成石油类物质落于地面土壤之上,造成土壤污染,特别是海洋溢油,对海岸线和海洋造成破坏性的影响。关于泄漏石油毒性尤其是对土壤环境的污染,一直是众多研究团队关注的焦点。众多研究表明,土壤中含油量对于其中生物如细菌、蚯蚓和植
日前,嘉兴市凤桥镇新民村蔡师傅在自家田里挖洞时,竟然发现类似于柴油一样的液体从下面渗出来。当地土地资源所的人解释说,该镇没有石油管线的铺设规划,没有油管泄漏的可能;这片田地附近也没有污水管网,也不会是污水泄漏,初步估计应该是附近区域出现油品渗漏的情况。那么油品泄漏会对土壤造成什么
近日,杰瑞集团全资子公司杰瑞环保科技有限公司成功收购华夏彩云工程公司。收购完成后,杰瑞集团将十年来环保业务和服务经验与华夏彩云环保工程资质和能力进行整合着力打造土壤修复业务,并形成以西南、西北地区为中心,辐射带动全国环保发展的产业布局,助力解决油田含油废弃物和城市土壤的污染问题,
中科院上海高研院低碳转化科学与工程重点实验室研发了一种新型快捷的油污土壤热处理技术。据介绍,该技术适用于处理各种浓度与难挥发的油污土壤,在回收油品的同时,实现了油污土壤的无害化与作物复耕,为油污土壤修复与油品回收利用提供了一条全新解决途径。相关研究成果近日申报了国家发明专利。油污
特邀报告成果分享展览展示技术交流对接合作环境污染是当今世界面临的重大挑战之一。随着人类经济和工业的快速发展,各种污染物不断释放,严重破坏了生态平衡,危害着人类的健康和可持续发展。因此,我们必须采取积极有效的措施,加强环境污染治理和保护工作。生物修复技术近几年来由于其具有处理效果高
各相关单位:环境污染是当今世界面临的重大挑战之一。随着人类经济和工业的快速发展,各种污染物不断释放,严重破坏了生态平衡,危害着人类的健康和可持续发展。因此,我们必须采取积极有效的措施,加强环境污染治理和保护工作。生物修复技术近几年来由于其具有处理效果高、设备简单、操作方便、经济可
近日,黑龙江省发布关于开展北方寒冷地区先进适用生态环境技术征集的通知,征集范围包括水污染防治与水生态修复、大气污染治理、土壤污染防治及地下水修复与管控、固体废物处理处置及资源化、生态环境监测、碳达峰碳中和、生物环保等相关技术,详情如下:关于开展北方寒冷地区先进适用生态环境技术征集
会议形式:特邀报告技术交流成果分享展览展示环境污染是当今世界面临的重大挑战之一。随着人类经济和工业的快速发展,各种污染物不断释放,严重破坏了生态平衡,危害着人类的健康和可持续发展。因此,我们必须采取积极有效的措施,加强环境污染治理和保护工作。生物修复技术近几年来由于其具有处理效果
为深入践行习近平生态文明思想,贯彻落实党的二十大关于推进绿色低碳发展、持续深入打好净土保卫战的决策部署,积极推动减污降碳协同增效,坚持问题导向、因地制宜、系统治理,综合运用自然恢复和人工修复两种手段,促进土壤污染风险管控和绿色低碳修复,生态环境部近日发布关于促进土壤污染风险管控和
北极星电力软件网获悉,10月24日,上海市人民政府办公厅发布关于印发《上海市加快合成生物创新策源打造高端生物制造产业集群行动方案(2023-2025年)》(以下简称《方案》)的通知。《方案》指出,应用层强化产业转型发展。聚焦合成生物技术在生物医药、先进材料、消费品、能源和环保五大领域的应用,
盛夏午后,阳光不燥。武汉市东湖高新区红旗湖“清水绿岸,鱼翔浅底”。这个经过启动修复的水体生态修复项目,在微生物作用下,经过几场细雨的滋润,已经宛若生机盎然的“热带丛林”。无独有偶,在芜湖市江东水生态公园,通过以微生物为中心所建的生态稳定塘,水中水草摇曳、藻荇交横。近年来,看似不起
在经历政策驱动下的快速发展后,土壤修复行业将进入高质量发展的关键期,修复技术也将逐渐向低成本、低碳、绿色高效以及可持续的修复模式发展,对精细化要求也会越来越高。“十四五”期间石油石化行业环保工作越来越受到重视,含油污泥相关的标准规范也陆续出台,油泥治理工作也将大面积开展。7月13-14
国家规划指出,力争到2025年,我国生物经济总量达到22万亿元。合成生物制造过程兼具绿色环保与降本增效优势,是带动未来生物经济发展的关键力量。来源:环球零碳作者:维小尼中国100亿吨的碳总排放量中,发电和供热约占45亿吨,工业排放约占39亿吨,两者占84%,所以,要实现碳中和,关键在于抓住能源替
8月8日,河南印发《河南省促进生物经济发展实施方案》。《方案》提出,规范发展生物环保产业。依托生物制造技术,实现化工原料和过程的生物技术替代,大力发展高性能生物环保材料和生物制剂,推动化工、医药、材料、轻工等重要工业产品制造与生物技术深度融合,向绿色低碳、无毒低毒、可持续发展模式转
日前,中国石油招标投标网发布吉林油田乾安采油厂历史遗留石油烃污染土壤微生物修复治理工程招标公告。详情如下:吉林油田乾安采油厂历史遗留石油烃污染土壤微生物修复治理工程招标公告招标编号:JLYT-ZBZX-2022-FW-0531.招标条件本招标项目招标人为中国石油天然气股份有限公司吉林油田分公司。招标项
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!