登录注册
请使用微信扫一扫
关注公众号完成登录
1、工艺原理及过程
硝化菌把氨氮转化为硝酸盐的过程称为硝化过程,硝化是一个两步过程,分别利用了两类微生物--亚硝酸盐菌和硝酸盐菌。这两类细菌统称为硝化菌,这些细菌所利用的碳源是CO32-、HCO3-和CO2等无机碳。第一步由亚硝酸盐菌把氨氮转化为亚硝酸盐,第二步由硝酸盐菌把亚硝酸盐转化为硝酸盐。这两个反应过程都释放能量,硝化菌就是利用这些能量合成新细胞和维持正常的生命活动,氨氮转化为硝态氮并不是去除氮而是减少了它的需氧量。
反硝化过程是反硝化菌异化硝酸盐的过程,即由硝化菌产生的硝酸盐和亚硝酸盐在反硝化菌的作用下,被还原为氮气后从水中溢出的过程。反硝化过程也分为两步进行,第一步由硝酸盐转化为亚硝酸盐,第二步由亚硝酸盐转化为一氧化氮、氧化二氮和氮气。同时,反硝化菌利用含碳有机物和部分分硝酸盐转化为氨氮用于细胞合成,该碳源既可以是污水中的有机碳或细胞体内碳源,也可以外部投加。
2、生物脱氮的工艺控制
(1)消化过程(硝化菌)的影响因素
1.温度:硝化反应的最适宜温度范围是30一35℃,温度不但影响硝化菌的比增长速率,而且影响硝化菌的活性。温度低于5℃,硝化细菌的生命活动几乎完全停止:在5一35℃的范围内,硝化反应速率随温度的升高而加快;但达到30℃后,蛋白质的变性会降低硝化菌的活性,硝化反应增加的幅度变小。对于同时去除有机物和进行硝化反应的系统,温度低于15℃时硝化速率会迅速降低。低温对硝酸菌的抑制作用更为强烈,因此在12~14℃的系统中会出现亚硝酸盐的积累。
2.溶解氧:溶解氧浓度为0.5-0.7mg/L是硝化菌可以忍受的极限,溶解氧低于2mg/L条件下,氮有可能被完全硝化,但需要较长的污泥停留时间,因此一般应维持混合掖的溶解氧浓度在2mg/L以上。对于同时去除有机物和进行硝化的工艺,硝化菌约占活性污泥的5%左右,且大部分处于生物絮体的内部。在这种情况下,溶解氧浓度的增加将会提高溶解氧对生物絮体的穿透力,从而提高硝化反应速率。
因此,在低泥龄条件下,由于含碳有机物氧化速率的增加使耗氧速率增加,减少了溶解氧对生物絮体的穿透力,进而降低了硝化反应速率。相反,在长泥龄条件下,耗氧速率较低,即使溶解氧浓度不高,也可保证溶解氧对生物絮体的穿透作用,从而维持较高的硝化反应速率。因此当泥龄降低时,为维持较高的硝化速率,应该相应提高溶解氧浓度。
3.pH值和碱度:硝化菌对pH值十分敏感,硝化反应的最佳pH值范围是7.2-8.0,pH值超出这个范围时,硝化反应速率会明显降低,低于6或高于9.6时,硝化反应将停止进行。另外,每硝化1g氦氮大约要消耗7.14gCaCO3碱度,因此,如果污水没有足够的碱度进行缓冲,硝化反应将导致pH值下降、反应速率减缓。
因此,保证硝化反应的正常进行,往往需要投加必要的碱量以维持适宜的pH值。硝化菌经过一段时间的驯化后,硝化反应可以在较低的pH值条件下进行,但pH值突然降低也会引起硝化反应速度的骤降。有研究表明,要使硝化反应的pH值由7.0降低到6.0,大约需要驯化10d。
4.有毒物质:过高的氨氮、重金属、有毒物质及某些有机物对硝化反应都有抑制作用。一般情况下,重金属和有毒物质主要抑制亚硝酸菌的生长,个别物质抑制硝酸菌的生长。有机物浓度高时,异养菌的数量会大大超过硝化菌,从而阻碍氨向硝化菌的转移,硝化菌能利用的溶解氧也因异养菌的利用而减少,硝化反应能顺利进行所要求的BOD5值一般应低于20mg/L。因此,在培养和驯化硝化菌时,一定要注意氨氮、重金属、有毒物质及有机物的浓度,不使其产生抑制作用。
5.泥龄:为保证反应器中的存活并维持一定数量和性能的硝化菌,活性污泥在其中的停留时间SRT即泥龄必须大于硝化菌的最小世代周期,否则硝化菌的流失率大于其繁殖率。最终使其从系统中数量越来越少。一般来说,系统的泥龄应为硝化菌世代周期的两倍以上,一般不得小于3一5d,冬季水温低时要求泥龄更长,为保证一年四季都有充分的硝化反应,通常泥龄都大于10d。较长的泥龄可增强硝化反应的能力,并可减轻有毒物质刺激的抑制作用。
6.碳氮比C/N:在活性污泥系统中,硝化菌一般只占微生物总量的5%左右,这是因为与异养菌相比,硝化菌的产率低。硝化菌是一类自养菌,有机物浓度不是其生长的限制因素,如果有机物浓度过高,会使生长速率较快的异氧菌迅速繁殖,争夺混合液中的溶解氧,从而使生长缓慢且好氧的硝化菌得不到优势,降低硝化速率。
因此BOD5与TKN的比值即碳氮比C/N,是反映活性污泥系统中异养菌与硝化菌竞争底物和溶解氧能力的指标,C/N不同直接影响脱氮效果。一般认为,处理系统的BOD5负荷低于0.15BOD5/(MLVSS˙d)时,硝化反应才能正常进行。
(2)反硝化过程(反硝化菌)的影响因素
1.温度:反硝化反应的最适宜温度范是35一45℃。温度对反硝化反应的影响与反硝化设备的类型(微生物悬浮生长型与附着生长型)及硝酸盐负荷有关。当温度从20℃下降到达15℃时,为达到相同的反硝化效果,生物转盘和活性污泥法的水力停留时间则分别要提高到原来的4.6倍和2.3倍。
2.溶解氧:反硝化菌是兼性菌,既能进行有氧呼吸,也能进行无氧呼吸。当水中同时存在分子态氧和硝酸盐时,优先进行有氧呼吸,这样,反硝化菌会优先降解含碳有机物,从而抑制硝酸盐的还原。所以为了保址反硝化反应的顺利进行,必须保持严格的缺氧状态,保持氧化还原电位为-50一-110mV。另外,反硝化菌从有氧呼吸转为无氧呼吸的关键是合成无氧呼吸的酶,而分子态氧的存在会抑制这类酶的合成及其活性。
因此,为使反硝化反应正常进行,悬浮型活性污泥系统中的溶解氧应保持在0.2mg/L以下,由于生物膜对氧传递的阻力较大,即使合液中有一定量的DO,生物膜内层仍呈缺氧状态而继续进行反硝化,所以附着型生物处理系统可以容许较高的溶解氧浓度(一般低于1mg/L)。
3.pH值:硝化反应的最佳pH值范围是6.5一7.5,不适宜的pH值会影响反硝化菌的生长速率和反硝化酶的活性。当pH值低于6.0或高于8.5时,反硝化反应将受到强烈抑制。反硝化反应会产生部分碱度,这有助于将pH值保持在所需要的范围内,并补充硝化过程中所消耗的一部分碱度。此外,pH值还影响反硝化的最终产物,pH值>7.3时最终产物是氮气,pH值<7.3时最终产物是N2O。
4.碳源有机物质:反硝化反应需要提供足够的碳源,碳源物质不同,反硝化速率也将有区别。挥发性有机酸、甲醇、乙醇等是理想的反硝化反应碳源物质,因此,啤酒污水等含挥发性有机物质的污水可作为反硝化反应脱氮的碳源,而以城市污水或内源代谢物质作为反硝化反应碳源时的反硝化速率就要低得多。
5.碳氮比C/N:理论上将1g硝酸盐氮转化为N2需要碳源物质BOD52.86g。因此,一般认为,当污水的BOD5/TKN值大于4-6时,可认为碳源充足,不需要另外投加碳源,否则,应当投加甲醇或其他易降解有机物作为碳源。
6.有毒物质:镍浓度大于0.5mg/L,亚硝酸盐氮含量超过30mg/L或盐度高于0.63%时都会抑制反硝化作用。硫酸盐含量过高会导致反硫化的进行,进而影响反硝化的正常进行,钙和氨的浓度过高也会抑制反硝化作用。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
北京排水集团原创厌氧氨氧化(“红菌”)技术成功中标国家存储器基地高氨氮废水处理项目,实现集团原创技术应用转化重大市场突破。国家存储器基地高氨氮废水处理项目位于湖北武汉光谷,作为北京排水集团在半导体芯片废水处理行业的首个工程,在目前“红菌”外部市场转化项目中,规模最大、示范效应最强
我将个人最近调试处理的硝化反应崩溃项目和大家分享一下,不足之处还请各位前辈指正!2022年8月15日,客户打电话说生化出水氨氮最近一直上升最高已经350了,因为出水一直超标目前厂里已经停产了(工业胶生产),目前生化已经停止进水,开始闷曝了(闷曝5天氨氮没有任何变化)。客户当时还是很着急的,
在这里我和大家分享一下我在高氨氮污水处理这方面的一些经验和教训。选这个项目的原因是这个项目是我处理过的污水中氨氮处理难度最大的项目。并且这个项目历时8个月,期间我掉池子里腿骨折,瘸了半年,现在碎骨头还在腿里。自己选的路,含着泪也要走。没办法,打着石膏拄着拐杖硬是把这个水调了出来。
以某化工生产企业废水为例,介绍高效吹脱法+折点氯化处理高氨氮废水的工程实例。该工程设计规模为3000m3/d,即125m3/h,进水NH3-N质量浓度高达1200mg/L。实践表明,采用该工艺处理高氨氮废水效果很好,出水NH3-N质量浓度小于15mg/L,可达污水综合排放标准(GB8978-1996)一级排放标准。
工业废水具有广泛的来源和类型。随着工业生产技术的进步,工业废水中的成分也变得多样化。其中,高需氧污染物和有毒污染物使工业废水的特征反映出为三方面:高浓度,高氨氮,难以降解。
做高氨氮废水十余年,经历了无数次氨氮TN超标的情况,中间酸甜苦辣各尝了一遍,不过很有借鉴意义,今天就聊聊在这过程中遇到的案例和解析!总氮的问题不复杂,读懂这篇文章大家以后遇到常见的总氮超标问题也能够得心应手了!一、氨氮超标导致的TN超标氨氮不达标,TN也很难达标,氨氮超标的情况有以下几
污水中因氨氮浓度不同分为高低浓度氨氮废水,在实际应用中氨氮浓度大于500PPM的废水需要预处理(称为高氨氮废水),然后配合低氨氮废水的处理工艺进行最后的脱氮,因高氨氮废水与低氨氮废水采用的工艺不同,本文大体介绍一下!一、高浓度氨氮废水处理技术1、吹脱法将空气通入废水中,使废水中溶解性气
摘要:随着我国工业经济的发展,环境污染问题日益严重。国家对于工业废水的排放提出了更高的标准。本文主要对工业废水氨氮分析方法的应用进行分析,以供参考。关键词:工业;废水;氨氮分析引言随着国家对环境保护的日益重视及废水排放标准的日益严苛,工业生产中产生的高氨氮废水处理成为一大难题。氨
作为一名环境工程专业的博士研究生,我博士期间的主攻方向是乡村生活污水处理工艺的研发。所以在看见“患者粪尿中检出活病毒”这样的报道后,很自然地联想到后续污泥污水的消毒工序。也许疫情形式如此严峻之下,多谨慎都不能视为恐慌。到底我们应该如何处理含病毒的厕所废水呢?有以下两点因素需要考虑
以某化工生产企业废水为例,介绍高效吹脱法+折点氯化处理高氨氮废水的工程实例。该工程设计规模为3000m3/d,即125m3/h,进水NH3-N质量浓度高达1200mg/L。实践表明,采用该工艺处理高氨氮废水效果很好,出水NH3-N质量浓度小于15mg/L,可达污水综合排放标准(GB8978-1996)一级排放标准。1.废水水质某颜料
天然气和页岩气开采废水含盐高、含氨氮和易挥发有机物也较高,现有方法脱氨氮处理效果不佳。利用氨与水分子相对挥发度的差异,研制出针对高含盐废水的脱氨氮技术及装置。通过试验验证,可有效分离高含盐废水中的氨氮,最终实现产出水回用或达标排放,解决了天然气和页岩气高含盐开采废水氨氮的脱除问题
过量的硝酸盐可导致婴儿高铁血红蛋白症,也可形成高度致癌的亚硝胺或亚硝酰胺,世界卫生组织(WHO)规定饮用水中的硝酸盐氮(NO3-N)浓度应低于10mg/L[1]。然而,由于施肥引起的硝酸盐淋溶流失、污水处理过程中总氮(TN)去除不彻底、自然水体中氮素的不断积累等原因,导致水体硝酸盐污染已成为当前重
厌氧氨氧化技术(anammox)是20世纪90年代由荷兰代尔夫特大学开发的一种新型自养生物脱氮工艺,与传统脱氮技术相比,自养型厌氧氨氧化工艺被认为是一种更高效、节能的废水处理方法,其在厌氧或缺氧条件下以NO2--N为电子受体,利用厌氧氨氧化细菌(anaerobicammoniaoxidationbacteria,AnAOB)将氨氮直接氧化为氮气。在节约了硝化反应曝气能源的基础上,还无需外加碳源,且由于AnAOB属自养型微生物,生长缓慢,因此,可大大减少工艺的污泥产量。
2021年11月3日,2020年度国家科学技术奖励大会在人民大会堂隆重举行。由哈尔滨工业大学、北京工业大学、中国科学院生态环境研究中心、中持水务股份有限公司、信开水环境投资有限公司共同完成的“污水深度生物脱氮技术及应用”项目(编号2020-F-304-2-01)荣获国家技术发明奖二等奖,主要完成人为:王爱杰、彭永臻、程浩毅、梁斌、邵凯、侯锋。
2020年度国家科学技术奖励大会11月3日在北京举行。本次奖励大会共公布国家自然科学奖授奖项目46项,国家技术发明奖授奖项目61项,国家科学技术进步奖授奖项目157项,并授予8名外籍专家和1个国际组织中华人民共和国国际科学技术合作奖。
传统生物脱氮方法在废水脱氮方面起到了一定的作用,但仍存在许多问题。如:氨氮完全硝化需消耗大量的氧,増加了动力消耗;对C/N比低的废水,需外加有机碳源;工艺流程长,占地面积大,基建投资高等。
短程硝化-厌氧氨氧化工艺是一种新型高效的自养生物脱氮技术,在处理高氨氮、低碳氮比废水方面具有诸多优势和良好应用前景。相较于传统生物脱氮工艺,短程硝化-厌氧氨氧化工艺具有脱氮效率高、无需外加有机碳源、节约60%曝气量、降低90%剩余污泥产量、显著减少温室气体排放等优点。其关键的一步是快速启
2020年度国家科学技术奖初评工作已经结束。根据《国家科学技术奖励条例实施细则》的规定,现将初评通过的46项国家自然科学奖项目、47项国家技术发明奖通用项目、133项国家科学技术进步奖通用项目,以及2019年度初评通过、因异议处理中止评审,现已调查处理完毕,按规则提交2020年度评审的国家技术发明
本篇主要讲解污水生物脱氮原理,包括污水脱氮方法简介、生物脱氮技术原理、污水生物脱氮影响因素、生物脱氮作用中的三类关键菌种。01、污水脱氮方法简介目前含氮污水脱氮,常用的方法有生物法、物理法、化学法、电化学法等四种方法,其中物理法大多采用加碱吹脱,化学法最常用的是折点加氯法,电化学法
传统生物脱氮方法在废水脱氮方面起到了一定的作用,但仍存在许多问题。如:氨氮完全硝化需消耗大量的氧,増加了动力消耗;对C/N比低的废水,需外加有机碳源;工艺流程长,占地面积大,基建投资高等。近年来,生物脱氮领域开发了许多新工艺,主要有:同步硝化反硝化;短程硝化反硝化;厌氧氨氧化和全程
厌氧氨氧化(Anammox)工艺是荷兰代尔夫特大学于1980年发现的一种新型经济高效的生物脱氮技术。其功能菌为化能自养型厌氧氨氧化细菌无需外加碳源,具有污泥产量少、脱氮效率高等优点。目前,全球已建成100余座厌氧氨氧化工程,其88%为一体式工艺、12%为分体式工艺。它们大多应用于中温、高氨氮废水的处理
一般以有机氮、氨氮、亚硝酸盐氰和硝酸盐氮四种形式存在。生活污水中氮的主要存在形态是有机氮和氨氮。通常采用的二级生化处理技术对氮的去除率是比较低的,一般将有机氮化合转化为氨氮,却不能有效地去除氮。污水脱氮,从原理看,可以分为物理法、化学法和生物法三大类。由于生物脱氮一般能够满足有关
近日,湖北郧西县污水厂及设施设备更新改造工程总承包公开招标,合同估算价9340.00万元,建设规模:对郧西县城关污水处理厂(5万吨/日)设备升级改造:更新改造格栅设备14套,生化预处理设备39套,污泥处理设备15套,在线监测设备11套,配套巡查车、吸污车污水处理设施14套;对郧西县其他15个乡镇污水处
为提高生活污水处理能力,江西吉安市遂川县投资14364.55万元,启动实施县城北生活污水处理厂扩容提标及配套污水管网改造项目建设,项目建成后,日处理污水能力将达到3万立方米。据悉,该项目占地面积58亩,总投资14364.55万元,已于4月7日开工建设,预计12月底竣工,计划扩建1.5万吨/天污水处理构筑物
经过36个月的连续奋战,11月15日,上海建工二建集团承建的竹园污水处理厂四期1.5标项目正式竣工。今年5月,该标段就已通过通水核验,投入使用。作为上海中心城区三大污水区域之一,竹园污水区域服务面积将达到335平方公里,服务人口约600万人,将对中心城区转输的旱流污水和雨污混合水进行处理,满足干
在病毒爆发的时期,每个人都无法独善其身的中招,但是至少有预见性和预防措施!但是假如有人投毒(偷排),让污泥“阳了”(中毒),留给我们的却只有突发性、不可预测性、难判断性、难恢复性!所以,污泥“阳了”(中毒)后的操作尤其重要!一、污泥中毒原因的判断在生物处理系统中毒事件发生后,为避
2020年,欧盟的地平线(Horizon2020)多了一个名叫水矿(WaterMining)的项目。顾名思义,就是要从水中挖矿,在污水生物处理工艺的副产物中挖掘可商业化的产品。这个项目从2020年9月正式开始,吸引了12个国家、38个机构的参与,总预算高达1910万欧。该项目计划在4年的时间里,分别对海水、城市污水和工业废
活性污泥法是处理城市污水最广泛使用的方法。它能从污水中去除溶解性的和胶体状态的可生化有机物以及能被活性污泥吸附的悬浮固体和其他一些物质,同时也能去除一部分磷素和氮素,是废水生物处理悬浮在水中的微生物的各种方法的统称。污泥的性能决定了污水处理的效率及效果,如何评价污泥性能?有这几个
厕纸等纤维素成分在污水中含量不菲,它们在生物处理过程中非但很难降解,反而会增加系统的运行负担。因此,国际上已开始从污水中分离纤维素的研究与实践。为探讨纤维素对污水生物处理系统性能与运行的影响,采用小试变形UCT工艺考察了它们的影响程度并揭示出影响机理。结果显示,纤维素存在只会在短期内影响COD、N、P去除,表现为曝气氧量不足。只要提高2~3倍曝气量便可恢复出水水质。
污水处理微生物反应原理及影响因素
二沉池是污水系统日常运行中最常用的池体之一,也是污水生物处理的最后一个环节。
导读国际水协的ASM活性污泥数学模型是污水生物处理工艺研究与过程模拟的基础平台,也是污水生物处理商业模拟软件的后台引擎与技术核心。作者通过与ASM相关的软件编程体会,系统地介绍了ASM模型体系的历史起源、基本结构和应用特点,对于还没有接触过ASM模型、但希望了解和学用ASM模型的污水处理工艺设计人员和读者是非常好的借鉴资料。
导读国际水协的ASM活性污泥数学模型是污水生物处理工艺研究与过程模拟的基础平台,也是污水生物处理商业模拟软件的后台引擎与技术核心。作者通过与ASM相关的软件编程体会,系统地介绍了ASM模型体系的历史起源、基本结构和应用特点,对于还没有接触过ASM模型、但希望了解和学用ASM模型的污水处理工艺设计人员和读者是非常好的借鉴资料。
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!