登录注册
请使用微信扫一扫
关注公众号完成登录
土壤pH与土壤重金属有效态含量呈极显著负相关关系,这与很多人的研究结论一致[23,24,25]。因此,pH是控制土壤重金属有效态的重要因素。土壤pH的升高使土壤表面胶体电负性增加,有利于土壤胶体对带正电荷的重金属离子进行电性吸附。土壤pH的增加会影响重金属的化学形态,形成羟基态的金属阳离子,这一形态的金属离子比自由态的金属离子更易和土壤吸附点位结合[26]。此外,随着pH的增大,土壤溶液中OH-浓度增大,重金属阳离子易与OH-结合生成难溶的沉淀物,从而导致土壤中重金属有效态含量的降低。土壤施入生物炭后CEC会增大,这会增强其对重金属阳离子的吸附和置换能力,进而增加了土壤对金属离子的钝化作用。
2.4 重金属赋存形态分级变化
土壤中的重金属总量可以评价一个地区土壤污染的水平,但是并不能准确地反映土壤污染的实际情况。因此,分析土壤中重金属的形态分布很有必要。本次研究采用BCR分级连续提取法,将重金属分为酸可提取态、可还原态、可氧化态和残渣态。其中酸可提取态迁移性较强,容易被生物直接利用;可还原态和可氧化态在一定的物理化学条件下也可转化为酸可提取态,可以被生物间接利用。残渣态主要存在于土壤晶格中,短期内不易释放,最稳定,迁移性小,不能被生物所利用[27]。
培养结束(56d)后,土壤中重金属的赋存形态分布如图6所示。由图6可知,添加生物炭后明显降低了土壤中酸可提取态Cu的比例,与CK处理相比,添加生物炭后随着添加水平的增加,土壤酸可提取态Cu依次分别相对降低了18.36%、49.68%和66.84%,可氧化态Cu分别降低了2.86%、7.50%和11.42%。可还原态Cu和残渣态Cu与对照CK相比,随着生物炭添加量的增加而增加,其中残渣态Cu增加了18.54%、52.60%和67.67%。酸可提取态Zn随着生物炭添加量的增大由对照CK组的24.43%依次减少到21.23%、18.02%和15.10%。添加1%生物炭土壤可还原态Zn含量与对照相比明显降低,之后开始逐渐升高,当添加量为5%时,土壤可还原态Zn反而比对照增加了4.68%。土壤中可氧化态Zn含量较低,总体呈现先升高后降低的趋势。残渣态Zn比对照分别增加了9.24%、21.58%和24.03%。土壤中Pb酸可提取态比对照CK组降低了9.76%、23.03%和41.16%,可还原态Pb降低了22.46%、34.52%和51.32%。Pb可氧化态含量也略有降低,但变化不大。与对照CK处理相比,随着生物炭添加量的增加,主要的赋存形态可还原态Mn含量呈现下降趋势,降幅分别为3.87%、10.61%和15.72%。酸可提取态Mn含量也逐渐下降,降幅为5%添加水平>3%添加水平>1%添加水平。可氧化态Mn在赋存形态中所占比例较低,添加生物炭后可氧化态Mn的含量较未添加生物炭处理有一定升高。残渣态Mn的增幅分别为8.88%、22.05%和25.22%。不同的重金属,钝化效果也不尽相同,对比这4种重金属元素,钝化效果依次为Pb>Cu>Zn>Mn。
总体来讲,生物炭改变了重金属在土壤中的形态分布,均使4种重金属的酸可提取态含量明显降低,残渣态含量升高,升高幅度均随着添加水平的增加而增加。这与刘晶晶等、Rizwan等和高瑞丽等[28,29,30]的研究结果一致,他们认为土壤中重金属形态的改变不仅与生物炭自身性质有关,而且和生物炭对于土壤理化性质(pH、CEC等)的改变有关。本次研究结果表明,加入生物炭后显著提高了土壤的pH。随着pH的升高,土壤中的黏土矿物、水合氧化物和有机质表面的负电荷会升高,土壤胶体负电荷数也会增加,增强了土壤对重金属阳离子的亲和性和吸附能力,降低了重金属的解吸。土壤pH同重金属的溶解度也有密切关系,随着土壤碱性的增加,土壤中重金属离子会生成难溶态的Pb(OH)2、Cu(OH)2、Zn(OH)2、Mn(OH)2等沉淀,沉淀比离子的移动性弱,且生物炭能与沉淀结合,因此降低了重金属在土壤中的移动性[31]。pH的升高同时也削弱了H+的竞争作用,导致土壤中的铁锰氧化物、有机质和重金属结合更紧密。生物炭输入也引起了CEC的增加,从而对重金属的静电吸附作用也越强,重金属离子会被牢牢吸附在土壤表面,降低其移动性。生物炭表面释放的Ca2+、Mg2+等阳离子与Pb2+、Cu2+、Zn2+和Mn2+会发生离子交换[32]。
生物炭的自身性质也会改变重金属形态,图2的红外光谱图表明玉米秸秆生物炭表面含有羟基(—OH)、羧基(—COOH)等含氧官能团,当土壤中重金属与生物炭相互接触时,生物炭表面会发生式(1)~式(6)的反应。
2(—ROH)+M2+→(RO)2M + 2H+ (1)
2(—RCOOH)+ M2+→(RCOO)2M + 2H+ (2)
—ROH+MOH+→(—RO)MOH + H+ (3)
—RCOOH+MOH+→(—RCOO)MOH + H+ (4)
2(—ROH)+ (MOH)2→(—ROH)2M(OH)2 (5)
2(—RCOOH)+ (MOH)2→(—RCOOH)2M(OH)2 (6)
式(1)~式(4)表示在生物炭表面羟基和羧基的作用下,重金属离子与其水解产物MOH+发生了离子交换反应,从而使重金属吸附到生物炭上。式(5)和式(6)表明在分子间氢键的作用下,生物炭表面的羟基和羧基与重金属结合成络合物,发生络合反应从而使得重金属吸附到生物炭颗粒表面并留存在土壤中,影响重金属在土壤中的迁移转化,在一定程度上起到了对重金属的钝化作用[33]。
红外光谱图1063cm-1处的强吸收峰为C—O—C吡喃环骨架振动,表明生物炭具有高度芳香化和杂环化的结构,这些官能团具有电子云高度密集的π电子结构,易与重金属形成π键作用,为典型的化学吸附。此外,生物炭比表面积较大,表面微孔结构丰富,可通过吸附作用降低重金属的溶解,同时被吸附的重金属离子也很难再次析出。
不同的生物炭由于其理化性质的差异,导致其对重金属钝化的机制也不尽相同,尤其是矿区土壤中的重金属污染多为复合污染,情况相对复杂。玉米秸秆生物炭钝化白云鄂博矿区土壤重金属离子的机制主要有吸附作用(离子交换、络合作用和π键作用)和沉淀作用。其中土壤胶体对重金属的吸附作用通常分为专性吸附和非专性吸附两种类型。专性吸附是由土壤胶体表面与被吸附的金属离子通过共价键、配位键而产生的吸附。非专性吸附是由静电引力产生的,这种吸附作用占据着土壤胶体正常的阳离子交换点,也称阳离子交换吸附。专性吸附和非专性吸附在生物炭对土壤中重金属离子固定的过程中都有可能发生,但主要以专性吸附为主[34]。Saha等[35]研究指出,专性吸附与离子的水解能力有关,离子的一级水解常数可以预测土壤胶体对重金属离子竞争吸附能力的大小,吸附亲和力的大小随一级水解常数负对数pK1的增大而减小[36]。4种重金属pK1的值分别为Mn(11.2)>Zn(9.0)>Cu(8.0)>Pb(7.8),而土壤对重金属离子的钝化效果依次为Pb>Cu>Zn>Mn,随着离子水解常数的升高,土壤对离子的专性吸附降低,与Saha研究一致。因此,本次研究认为玉米秸秆生物炭钝化白云鄂博矿区土壤重金属离子的机制是以吸附作用为主,同时辅以沉淀作用。
3 结论
利用室内土壤培养实验,研究分析玉米秸秆生物炭对矿区土壤性质、土壤中4种主要的重金属Cu、Zn、Pb和Mn的有效性及形态分布的影响,得到如下主要结论。
(1)添加不同比例的生物炭均可以提高土壤的pH和CEC,而且都随着生物炭添加量的增加而增加。培养结束后,与对照CK相比,1%、3%和5%添加水平下pH分别增加了1.14、1.42和1.67个单位,土壤CEC分别增加了2.02cmol/kg、3.60cmol/kg和5.39cmol/kg。
(2)与对照组相比,添加不同含量生物炭后,土壤中有效态重金属均呈现不同程度的降低,而且生物炭添加量越大,降幅也越大,钝化效果依次为5%生物炭> 3%生物炭> 1%生物炭;不同的重金属,钝化效果也不尽相同,对比这4种重金属元素,钝化效果依次为Pb>Cu>Zn>Mn;重金属Cu、Zn、Pb和Mn的有效态含量与土壤pH、CEC均呈显著负相关关系。
(3)添加生物炭后,土壤中重金属的形态发生了变化,由易迁移的弱酸提取态向更加稳定的残渣态转化,且生物炭添加量越大,钝化效果越显著。钝化机制主要有吸附作用(离子交换、络合作用和π键作用)和沉淀作用。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
近日,为加强北京市市政基础设施工程质量管理,促进市政基础设施工程质量的提高,推进技术创新、管理创新,推广应用新技术、新材料、新工艺、新设备,促进企业科技进步,提升企业管理水平,鼓励企业科技进步,北京市政工程行业协会对2023年度北京市政科技创新成果进行了表彰。高能环境两项技术成果“多
北极星环境修复网获悉,8月31日,上海市生态环境局印发《上海市重金属污染土壤异位淋洗修复技术指南(试行)》的通知。本指南规定了上海市重金属污染土壤异位淋洗修复工程的工作流程、工程设计、施工、运行、监测及修复效果评估等。本指南适用于上海市重金属污染土壤异位淋洗修复工程,可作为污染土壤
北极星环境修复网获悉,7月5日,重庆九龙坡区人民医院迁建项目(配套道路)土壤污染治理工程EPC总承包招标,本次招标项目工程总投资额约2520.28万元,合同估算金额约1913.54万元,招标人为重庆九龙半岛开发建设有限公司。本次招标范围主要包括设计、工程施工、专业设备材料采购等内容,具体范围为:包
北极星环境修复网获悉,6月17日,德园南路以东、连浦河以南地块(06-04)土壤及地下水修复工程(嘉定区202301号污染场地治理修复工程)公布中标候选人,第一中标候选人为上海纺织建筑设计研究院有限公司,报价3253.0048万元,第二中标候选人为上海亚新城市建设有限公司,报价3256.1649万元。据了解,该项
北极星环境修复网获悉,5月5日,德园南路以东、连浦河以南地块(06-04)土壤及地下水修复工程(嘉定区202301号污染场地治理修复工程)启动资格预审,工程总投资3957万元,本标段建安工程费为3264.28万元,施工工期为240日历天。据公告显示,项目招标人为上海市嘉定区土地储备中心(上海市嘉定区房屋土地征
北极星环境修复网获悉,2023年4月21日,重钢炼钢厂原址地块(道路区域)土壤污染修复项目公布中标候选人,第一中标候选人为浙江卓锦环保科技股份有限公司,报价1456.025857万元。第二中标候选人为浙江益壤环保科技有限公司,第三中标候选人为中科鼎实环境工程有限公司。项目合同估算金额3000万元。项目
北极星环境修复网获悉,3月17日,重庆市公共资源交易网发布长安三工厂片区城市更新(一期)江北区观音桥组团K标准分区K17-404、K20-203、K22-1-103、K22-1-203地块及周边部分道路区域土壤污染修复项目招标公告,项目预算金额1200万元,招标范围为对长安三工厂片区城市更新(一期)江北区观音桥组团K标
北极星环境修复网获悉,3月16日,深圳市步涌股份合作公司利益统筹项目A地块土壤修复项目中标结果公布,瑞景(深圳)生态科技有限公司、武汉瑞景环境修复工程有限公司联合体中标,中标金额358万元。项目服务内容为方案编制和污染土壤处理服务:通过开展地块问题识别、场地修复模式筛选、场地修复技术筛
2023年2月23日,重庆市公共资源交易网发布重钢炼钢厂原址地块(道路区域)土壤污染修复项目招标公告,项目合同估算金额3000万元,不接受联合体投标,预计3月22日开标。项目招标人为重庆渝泓土地开发有限公司,本次招标范围主要为重钢炼钢厂原址地块内部分规划道路用地,占地面积约66117.28m2(99亩),
北极星环境修复网获悉,2月9日,柳州市发布香兰大道西侧(原海川家具市场及周边道路、绿地)一号地块(B地块)土壤污染修复EPC工程总承包招标公告,公告显示,工程估算投资约1222.607069万元,地块面积46765.29㎡,地块土壤中主要污染物为砷、铅、镍和苯并[a]芘,采用异位稳定化+异位阻隔填埋+水泥窑协
北极星环境修复网获悉,2月8日,重庆市公共资源交易网发布重庆农业机械厂原址地块土壤污染治理修复项目中标候选人公示,第一中标候选人为招商局生态环保科技有限公司,投标报价8488470.82元,浙江卓锦环保科技股份有限公司、重庆港力环保股份有限公司分别是第二、第三中标候选人。据招标文件显示,重庆
近日,航天凯天环保土壤修复喜讯频传,成功中标溆浦县水东镇江东湾锑矿区污染风险管控工程项目。此次中标是航天凯天环保在怀化地区继麻阳县原省铜矿矿区重金属污染综合治理工程项目之后的又一项目,也是作为环境修复事业部承接的首例污染风险管控项目,为航天凯天环保修复治理再添一笔。该工程是溆浦县
来信:现有一地下石膏矿开采项目,其采矿区距离湿地保护区(缓冲区)约5000m,项目的采矿深度约为500m。根据该项目的开采利用方案,在项目的运营期每天要排出约5000立方米的地下坑涌水,经过周围的小河(3类地表水)最终排入湿地保护区内的湖泊(规划为3类地表水)。通过对石膏矿区探矿孔地下水的监测
随着工业化和农业生产的现代化的飞速发展,土壤重金属污染问题成为了环境污染中亟待解决的一部分。土壤重金属污染不仅会直接造成土壤退化、使农作物减产,而且会间接引发一系列的问题,给人类的生活带来潜在的威胁,如人类生存环境逐渐恶化和地下水的污染等[1]。由于重金属污染土壤具有范围广、隐蔽
摘要:近年来我国重金属污染事件频发,严重影响广大群众的身体健康,土壤重金属污染与防治成为人们关注的环境问题之一。作者结合多年的工作经验,综述了近年来国内外有关重金属污染土壤修复技术的研究进展,包括物理/化学修复技术、生物修复技术和农业生态修复技术等,对每种技术的基本修复原理、技术
我国的土壤重金属污染已经威胁到农产品质量安全和人体健康,全国约有19.4%的耕地调查样点超过土壤环境质量限量标准。不久前,生态环境部印发了《关于加强涉重金属行业污染防控的意见》,提出到2020年,全国重点行业的重点重金属污染物排放量比2013年下降10%;集中解决一批威胁群众健康和农产品质量安全
我国重金属污染物排放总量仍处于高位水平,历史遗留问题比较突出。控制重金属污染物排放量,防范重金属环境与健康风险是一项艰巨而长期的任务。明确重点行业重金属污染物减排目标我国的土壤重金属污染已经威胁到农产品质量安全和人体健康,全国约有19.4%的耕地调查样点超过土壤环境质量限量标准。不久
为了解生物炭的农业环境效应,采用大田试验,研究了不同生物炭施用量(0、5、10、20、30tdot;hm-2)对韶关仁化县矿区周边重金属污染农田土壤理化性质、玉米(粤甜9号)生长状况、产量及重金属累积等的影响。结果表明:与对照(CK)相比,生物炭显著提高土壤pH值和有机质质量分数,其提升幅度随施用量的增加而
十九大报告中多次提到ldquo;生态文明rdquo;,这一关键词也在朋友圈频繁刷屏,其中ldquo;强化土壤污染管控和修复rdquo;也备受关注。我省素以ldquo;有色金属之乡rdquo;ldquo;鱼米之乡rdquo;著称,为加强土壤污染防治,保障农产品质量和居住环境安全,近来,湖南全面实施《湖南省土壤污染防治工作方案》(
蓝天白云下,山头青翠如黛,流水清澈见底,空气中也弥漫着清新的青草味。这是近日记者在湖南省石门县白云镇雄黄矿区所看到的景象,而昔日,这里尚是一片寸草不生砒霜地。经过四年多综合治理,雄黄区污染综合治理取得阶段性成效。今年,湖南省环保厅启动了全省土壤污染状况详查,目前已开展全省疑似污染
2017年5月,踏访石门县白云镇雄黄矿区,蓝天白云下,山头青翠如黛,流水清澈见底,空气中也弥漫着清新的青草味。4年来,矿区污染综合治理取得阶段性成效。石门县雄黄矿区是亚洲最大的单砷矿区,具有1500多年的开采历史。1950年,由原湖南省工业厅批准筹建,在石门白云境内建设起省属企业雄黄矿区,一直
2025年4月21日至23日,第26届中国环博会在上海新国际博览中心成功举办。万容科技,深耕固体废弃物资源化利用领域20年,受邀携城乡废弃物资源循环低碳体系“三岛”模式精彩亮相。凭借技术创新和产业实践的卓越表现,万容科技荣登环保科技TOP100企业榜单,并通过主题演讲和战略合作签约,引发行业高度关
北极星水处理网获悉,7月8日,陕西凤翔高新区柳林污水处理厂项目(EPC)工程总承包招标公告发布。公告显示,本项目计划总投资1.803217亿元人民币。项目占地12亩,新建处理规模为10000吨/日的污水处理厂建设形式为下沉式污水处理厂,工程内容包括综合处理池(调节池及事故池、水解酸化池、两级A0生化池、
建设“无废城市”是深入贯彻落实习近平生态文明思想的具体行动,是深入打好污染防治攻坚战的重要举措,是推动实现高质量发展的有力抓手。近年来,无锡市“无废城市”建设坚持高位部署,一路快马加鞭,涌现出一大批典型项目和先进做法。为充分发挥典型示范引领作用,激发“无废城市”创新活力,“无锡生
9月13日,泰安市第六污水处理厂建设项目设计施工总承包(EPC)中标候选人公示发布,拟中标人为湖南航天凯天水务有限公司,中标金额为39263.86万元,工期730日历天。本项目设计总规模4万m/d,其中工业污水1万m/d,生活污水3万m/d。厂区总占地面积72.5亩,总建筑面积3720㎡,主要建构筑物包括:进水在线监
8月29日,钱江水利发布公告,公司董事会董事会于28日审议通过《关于投资永康市城市污水处理厂扩建(五期)工程项目的议案》。项目设计污水处理规模4万吨/日,处理工艺为曝气沉砂池+多段AO生反池+二沉池+高效沉淀池+V型滤池+NaClO消毒,本项目总投资31,972.21万元,由钱江水利控股子公司永康市钱江水务
北极星输配电网获悉,8月10日,银川市发展和改革委员会发布关于公开征求《银川市碳达峰实施方案》(征求意见稿)意见建议的公告,征集时间:2023-08-1009:00至2023-09-0817:00。文件提出,强化应用基础研究和先进适用技术研发应用。在基础前沿技术方面,聚焦可再生能源、碳捕集利用与封存、储能、氢能
北极星碳管家网获悉,6月29日,辽宁省科技厅发布《辽宁省科技支撑碳达峰碳中和实施方案(2023—2030年)》。方案提出,聚焦碳捕集利用与封存(CCUS)技术的全生命周期能效提升和成本降低,重点突破低成本低能耗二氧化碳捕集的吸收剂/吸附剂、二氧化碳高效催化转化,以及二氧化碳化学利用、驱油、地质封
北极星环保网获悉,6月29日,辽宁省科技厅发布《辽宁省科技支撑碳达峰碳中和实施方案(2023—2030年)》。方案提出,着力发展节能环保新兴产业集群,建立科技型中小企业、高新技术企业、雏鹰瞪羚独角兽企业培育体系,完善“众创空间—孵化器—加速器—产业园”创业孵化体系,遴选和支持一批绿色低碳科
广西北投环保水务集团有限公司:你公司报来的《防城港市有机废弃物综合处置利用项目环境影响报告表》(以下简称《报告表》)及相关材料收悉。经审查,批复如下:一、项目为新建项目(代码:2204-450602-04-01-787202),已在广西壮族自治区投资项目平台备案,建设符合《产业结构调整指导目录(2019年)
由汤姆森润滑油独家冠名,新能源网、全球生物质能源网、51颗粒交易网联合业内知名企业共同联合发起《CBC2023第六届中国(国际)生物质能大会暨展览会》于5月11日-12日在杭州顺利举办。与会嘉宾们发表了精彩的演讲,对生物质行业规模化发展、零碳供热、无废城市、生物质发电产氢、新技术研发和项目实践
碳捕集、利用与封存(CCUS)技术是支撑碳中和目标实现的关键减排技术,对我国以煤为主的能源结构转型至关重要。目前,该技术研究取得积极进展,但商业化项目数量和应用场景相对有限。随着捕集技术的成熟、能耗的降低、基础设施的完善以及产业化能力的增强,预计2030年后CCUS技术具备逐步推广应用的条件
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!