登录注册
请使用微信扫一扫
关注公众号完成登录
注:筛选值为《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600—2018)[6]一类用地筛选值。
Note: Screening values are according toSoilEnvironmentalQualityRiskControlStandardforSoilContaminationofDevelopmentLand(GB36600—2018)[6]first-class land.
1.3 样品采集及预处理
选取约30 000 m2污染较重的区域开展专项调查,布设11个PAHs土壤采集点位(图1)。采集0~20 cm表层土壤样品,土壤置于聚乙烯自封袋中避光保存。试验前将所有土壤样品在阴凉处自然风干,去除石块、枯枝叶等杂物,研磨过筛,土壤筛分至<250 μm,用于污染物生物可给性研究。供试土壤理化性质如表2所示。
图1 场地点位布设图
Fig. 1 Site layout map
表2 供试土壤理化性质
Table 2 Physical and chemical properties of the soils
1.4 样品提取及分析
1.4.1 土壤中PAHs总量的提取
采用加速溶剂法提取PAHs总量[23]。将12 g干燥土样和3 g硅藻土混合均匀后,装入22 mL萃取池。提取溶剂为体积比1∶1的正己烷/丙酮混合溶液。在100 ℃下加热5 min,压强为1 500 psi(10.3 MPa),静态下循环2次,每次提取5 min,用13.2 mL体积比1∶1的正己烷/丙酮混合溶液进行冲洗,1.2 MPa氮气吹扫60 s。提取液经旋蒸浓缩后,过弗罗里固相萃取小柱净化[24],用正己烷和二氯甲烷(体积比1∶1)洗脱,收集洗脱液转移至K-D瓶氮吹定容,过滤后存储至棕色小瓶待测。
1.4.2 模拟胃肠液提取土壤中PAHs
采用德国标准研究院颁布的生物可给性测试方法(DIN体外法)[18]测试土壤中PAHs的生物可给性,消化液的成分及方法参数如表3所示。将1 g土壤与50 mL模拟胃液混合于250 mL锥形瓶中,加入5 g奶粉。用10% HCl将模拟胃液初始pH调为2,每30 min监测一次,维持模拟胃液pH在2~4,若偏离,用10% HCl或固体碳酸氢钠粉末调节,37 ℃下恒温震荡2 h。胃相提取完成后,加入等体积的模拟肠液,用固体碳酸氢钠粉末将胃相调至肠相环境即pH为7.5,随后每15 min监测调整一次pH并将其稳定在7.5±0.2,在37 ℃恒温震荡3 h。提取结束后,在7 000 r·min-1下离心分离15 min,收集上清液20 mL,用10 mL正己烷超声萃取3次,用分液漏斗分离并收集有机相,用无水硫酸钠脱水干燥,干燥后的有机相按1.4.1方法处理后保存待测。
表3 模拟胃肠液的配制及提取条件
Table 3 Preparation and extraction conditions of simulated gastrointestinal fluid
1.4.3 土壤中PAHs测试
使用Agilent 7890-5795 GC-MS进行土壤样品中PAHs含量的测试。GC-MS检测器为FID,检测器温为230 ℃,色谱柱为DB-5 MS型(30 m×0.25 mm×0.25 μm),载气为高纯氦气(99.9999%),扫描模式为选择性离子检测(SIM),传输线和离子源的温度分别为280 ℃和230 ℃,离子源为EI。电子轰击源能量为70 eV,进样口温度为290 ℃。色谱柱使用升温程序:初始温度100 ℃,以30 ℃·min-1升到280 ℃,保持1 min,再以5 ℃·min-1升到300 ℃,保持3 min,采用1.0 μL不分流进样,柱流速1.4618 mL·min-1。
1.4.4 PAHs的生物可给性计算
(1)
式中:Bio表示土壤中PAHs在胃肠相的生物可给性(无量纲);CBio为土壤中PAHs在模拟胃肠液中的溶解量(mg·kg-1);C0为土壤中PAHs的总量(mg·kg-1)。
1.5 PAHs经口暴露途径风险评估
1.5.1 PAHs风险评估
污染土壤可以通过口腔摄入、皮肤接触和呼吸吸入3种方式进入人体,并对人体产生毒害作用。对于土壤中的PAHs(半挥发性有机物),经口摄入是其主要暴露途径,经口摄入途径的致癌风险计算方法如下[5]∶
(2)
CRois=OISERca×Csur×SFo(3)
式中:OISERca为经口摄入土壤暴露量(kg(土壤)·kg-1(体质量)·d-1);CRois为经口摄入土壤途径的致癌风险(无量纲);Csur为表层土壤中污染物浓度(mg·kg-1);其余参数如表4所示。
表4 风险评估所需参数及推荐值
Table 4 Parameters and recommended values for risk assessment
注:HJ 25.3—2019为《建设用地土壤污染风险评估技术导则》(HJ 25.3—2019)[5]。
Note: HJ 25.3—2019 representsTechnicalGuidelinesforRiskAssessmentofSoilContaminationofLandforConstruction(HJ 25.3—2019)[5].
1.5.2 PAHs修复目标值
经口摄入途径下基于可接受致癌效应的土壤修复目标值计算方法如下∶
(4)
式中∶RCVSois为经口摄入途径下基于可接受致癌效应的土壤修复目标值(mg·kg-1),ACR为人体可接受健康风险;OISERca为经口摄入土壤暴露量(kg(土壤)·kg-1(体质量)·d-1)。
5种PAHs均以致癌风险为主,根据《建设用地土壤污染风险评估技术导则》(HJ 25.3—2019)[5],设定5种PAHs的可接受致癌风险水平为10-6。当以土壤中污染物全量进行风险评估时,经口摄入吸收因子ABSo=1;当考虑生物可给性时,式(2)中ABSo取值等于实测Bio值。
2 结果(Results)
2.1 场地污染状况
土壤检测结果如表5所示,5种PAHs除了BKF以外其他PAHs(BBF、BAP、IPY和DBA)均超出《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600—2018)[6]第一类筛选值,其中BAP超标最严重,超标倍数达44.47倍。
表5 场地土壤污染物超标情况统计
Table 5 Statistical table of soil pollutants exceeding the standard
注:筛选值数据来源于《土壤环境质量建设用地土壤污染风险管控标准》(GB36600—2018)[6]。
Note: Screening values are according toSoilEnvironmentalQualityRiskControlStandardforSoilContaminationofDevelopmentLand(GB36600—2018)[6].
2.2 PAHs的生物可给性
每个点位土壤中PAHs的生物可给性如表6所示。土壤中BBF、BKF、BAP、IPY和DBA生物可给性范围分别为17.12%~52.03%、28.81%~52.59%、18.51%~52.79%、14.71%~54.8%和32.34%~56.42%。其中DBA生物可给性均值最高,为45.56%;IPY生物可给性均值最低,为35.75%。
表6 多环芳烃(PAHs)生物可给性
Table 6 Bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) (%)
2.3 PAHs健康风险水平
根据污染场地风险评估模型,计算经口摄入途径下考虑和不考虑生物可给性时PAHs的致癌风险,风险评估结果如表7所示。不考虑生物可给性时计算BBF、BAP、IPY和DBA的致癌风险均超过10-6;考虑生物可给性时计算BAP、IPY和DBA的致癌健康风险仍超过10-6,而BBF的风险水平从10-6降至10-7,低于导则规定的致癌健康风险水平。
表7 4种PAHs的健康风险水平
Table 7 Health risk levels of 4 PAHs
注:95% UCL表示95%置信区间上限值。
Note: 95% UCL represents the upper control limits of 95%.
2.4 PAHs修复目标值
根据污染场地污染物修复目标值计算模型,计算超过健康风险可接受水平的3种PAHs (BAP、IPY和DBA)在考虑和不考虑生物可给性时的修复目标值,结果如表8所示。不考虑生物可给性时计算BAP、IPY和DBA的修复目标值分别为0.78、7.82和0.78 mg·kg-1;引入生物可给性后BAP、IPY和DBA的修复目标值(95% UCL)分别为2.83、34.63和1.95 mg·kg-1。
3 讨论(Discussion)
3.1 PAHs环数对生物可给性的影响
土壤中PAHs的生物可给性如图2所示。由图2可知,IPY的生物可给性略低于其余4种PAHs,这可能是因为IPY是6环PAHs,相较于5环PAHs,其疏水性、亲脂性稍强,并通过π-π作用与土壤有机质结合得更加牢固,很难从土壤中解吸出来导致其生物可给性偏低[25-26]。这与Tao等[13]的研究结果相一致,高分子量的PAHs比低分子量的PAHs疏水性更高,通过强π-π和疏水作用与土壤有机质结合力更强,即较高溶解性低环数的PAHs具有更高的生物可给性。吕正勇等[27-28]的研究结果也表明,辛醇水分配系数高的高环PAHs,更容易与土壤中的有机质结合或进入土壤颗粒的微孔中间,而难以被提取,在土壤中的残存率高,将导致土壤中PAHs的生物有效性较低。
图2 5种PAHs的胃肠模拟生物可给性
Fig. 2 Gastrointestinal simulated bioaccessibility of five PAHs
3.2 基于全量和生物可给性的PAHs风险及修复目标值
基于总量和生物可给性的风险评估结果如表8和图3所示。结果表明,基于总量计算4种超标PAHs的致癌风险均超过导则规定的致癌健康风险水平10-6;考虑生物可给性后4种PAHs的致癌健康风险均有不同程度降低,其中,BAP、DBA和IPY的致癌风险仍超过10-6,但BAP和DBA的风险比不考虑生物可给性时降低了1个数量,在考虑生物可给性后BBF的人体健康致癌风险已低于导则规定的致癌风险可接受水平。考虑生物可给性以后IPY的健康风险降低最多,达到了72%;DBA的健康风险降低最少,为57%。
表8 3种PAHs经口摄入途径土壤修复目标值
Table 8 Target values of soil remediation by oral intake of 3 PAHs (mg·kg-1)
图3 PAHs人体健康风险
Fig. 3 Human health risks of PAHs
相应地,在考虑生物可给性后PAHs的修复目标值均有一定程度的提高(表6和图4)。在考虑生物可给性后BAP、IPY和DBA的修复目标值分别提高了2.6倍、3.4倍和1.5倍。其中IPY修复目标值提高最为显著,DBA土壤修复目标值提高倍数较少,这是因为DBA的生物可给性较高,大多在40%以上,故修复目标值提高的空间有限。可见基于PAHs生物可给性进行健康风险评估并确定土壤修复目标,在一定程度上可以克服现在技术导则计算修复目标值过严导致修复成本过高的问题。
图4 PAHs修复目标值
Fig. 4 PAHs remediation level
本文通过DIN体外法对焦化厂中5种PAHs生物可给性的测定及健康风险评估得出以下结论。
(1) 5种PAHs中BBF、BAP、IPY和DBA浓度超过建设用地第一类用地筛选值。
(2) 采用DIN体外法研究了经口摄入途径下土壤中PAHs的生物可给性,结果表明,BBF、BKF、BAP、IPY和DBA共5种PAHs的生物可给性范围为13.51%~56.42%。
(3) 基于土壤中每种PAHs总量分析时,土壤中BBF、BAP、IPY和DBA的经口暴露途径致癌风险水平均超过人体可接受水平(10-6);当引入生物可给性后4种超标PAHs的健康风险均有所下降,其中BBF的风险值降至人体可接受水平以下;相应地,在考虑生物可给性后PAHs的修复目标值均有一定程度的提高。
(4) 基于生物可给性对土壤中PAHs经口摄入途径健康风险进行评估并计算修复目标更加客观,可在一定程度上克服现有技术导则计算土壤PAHs修复目标值过于保守的问题。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
多环芳烃(PAHs)是一类包含两个以上苯环的稠环类芳香族烃类有机化合物,具有较强的生物毒性。我国2019年开始实施的《农用污泥污染物控制标准》(GB4284-2018)中对污泥中PAHs的含量做出了严格规定。论文选择长江经济带沿江城市的污水污泥、河湖底泥、通沟污泥为研究对象,采用GC-MS检测多源污泥中16种
近日,以消除焦炉酚氰废水处理各水池运行中散发的无组织废气为根本目的,板材炼铁总厂八、九号焦炉酚氰异味处理工程正式上线运行。这是本钢集团贯彻落实“双碳”要求,开工建设系列超低排项目中首个投入使用的重点工程,标志着本钢集团钢铁冶炼工艺进入超低排时代。近年来,本钢集团以习近平生态文明思
近年来,水体中频繁检出的抗生素、全氟化合物和微塑料等化学品已经成为一类不可忽视的新污染,给饮用水安全带来潜在风险和巨大挑战。国家“十四五规划”中已明确提出了“重视新污染物治理”的工作部署,而新污染物治理作为饮用水源污染防控的重要新领域,目前缺乏切实有效的防控技术与治理手段。通过梳
石油烃污染场地已经成为国内外重点关注的工业污染场地类型之一。国内基于人体健康风险的污染场地管理模式及分层次评估方法已经展现雏形,为风险管理者提供了基于人体健康的土壤石油烃风险筛选值和管制值,也为污染场地的防治与修复工作提供了决策支持。
摘要∶实现污染场地安全高效修复是石化行业发展急需探讨和解决的关键问题。从特征污染物特点、水文地质条件、修复环境效应3个方面分析石化污染场地修复面临的挑战,预测未来石化污染场地地下水修复技术,并提出按照污染程度进行分区修复治理的对策。
为研究焦化生产对土壤多环芳烃(PAHs)污染规律,采集北京、重庆和太原地区3个焦化厂地块的土壤样品共1437个,采用气相色谱-质谱(GC-MS)法测定USEPA优先控制的16种PAHs质量含量。
含油污泥成分复杂,含大量原油,其中石油烃(PHCs)是宝贵的资源。我国含油污泥中PHCs含量占15%~50%,固体颗粒物含量5%~46%,含水率一般为35%~90%,甚至更高,pH值通常为6.5~7.5,同时含有大量胶质、沥青质以及苯系物、蒽、酚、芘等有毒有害物质,甚至还有放射性物质和重金属,其中很多物质具有“三致”效应(如多环芳烃(PAHs))。含油污泥因具有毒性和易燃性而被列入《国家危险废物名录(2018)》(HW08废矿物油与含矿物油废物),若处理不当会对生态环境和人类健康造成严重威胁。
焦化废水处理一直是国内外污水处理领域的一大难题。焦化废水主要来源于钢铁行业炼焦的焦化厂,是炼焦炭或制煤气过程中产生的难生物降解的高浓度有毒有机废水。焦化废水水质成分复杂,含有高浓度的氨氮、酚类化合物、PAHs以及含氮、氧、硫的杂环化合物等,废水中污染物组成复杂,属较难生化降解的高浓度
摘要:根据生产工序的不同将焦化场地划分为堆煤区、炼焦区、化产区,共采集40组土壤样品,分析各类污染源作用下场地PAHs污染程度、分布、影响途径及组成特征等.结果表明,场地处于严重污染水平且BaP是健康风险首要关注污染物.按ΣPAHs含量中位数排序,化产区(1733.87mg/kg)炼焦区(32.86mg/kg)堆煤区(21.21m
摘要:通过对农田土壤多环芳烃(Polycyclicaromatichydrocarbons,PAHs)的分布特征、污染程度及成因解析,深入了解工业活动引发的土壤污染问题,实现工业园区周边农田土壤的污染预警和科学合理利用。在黄河三角洲石油开采区和西南铅锌冶炼区附近的农田分别采集89个和148个土壤样品,采用气相色谱-质谱
近日,湖北省生态环境厅印发《湖北省工业炉窑大气污染物排放标准(征求意见稿)》。本标准适用于湖北省现有工业炉窑的大气污染物排放管理,以及工业炉窑新建、改建、扩建项目的环境影响评价、环境保护设施设计、竣工环境保护验收、排污许可证核发及其投产后的大气污染物排放管理。除本标准明确的水泥行
7月19日,欧盟委员会发布对华生物柴油反倾销调查初裁披露,拟对自中国进口的生物柴油征收12.8%至36.4%的临时反倾销税。8月16日,欧盟委员会正式宣布针对中国进口的生物柴油征收临时反倾销税,终裁将于明年初裁定。消息发布以来,国内多家生物柴油企业宣布停产或转产。商务部新闻发言人警告,征税措施只
2024年,黑龙江省继续大力开展打击危险废物环境违法犯罪和污染源监测数据弄虚作假违法犯罪专项行动,持续保持对环境违法犯罪行为从严惩处的高压态势。各地生态环境部门积极联合公安机关协同推进,打击了一批涉危险废物环境违法犯罪案件。为充分发挥典型案例警示震慑作用,黑龙江省生态环境厅现公布绥化
10月10日,三门峡市人民政府正式对外发布《三门峡市新污染物治理工作方案》,文件指出,到2025年,完成高关注、高产(用)量的新污染物环境风险筛查,初步建立新污染物环境调查监测体系,建立市级重点管控新污染物清单,对重点管控新污染物实施禁止、限制、限排等环境风险管控措施。有毒有害化学物质环
日前,电建生态公司实施的首个污染场地土壤修复治理项目——武汉铁塔厂土壤修复项目污染治理主体工程全面完工。武汉铁塔厂地块土壤修复项目是为修复铁塔厂区12.9万平方米范围内的2.8万立方米污染土壤而实施的一项综合性治理工程。该项目采用原地异位化学氧化和酸碱中和、原位中和修复、水泥窑协同处置
郑州市人民政府7月14日发布《郑州市新污染物治理工作方案》,统筹推进新污染物环境风险管理,实施调查评估、分类治理、全过程环境风险管控,加强制度和科技支撑保障,建立健全新污染物治理体系,有效防范新污染物环境与健康风险。郑州市新污染物治理工作方案为加强新污染物治理,保障生态环境安全和人
北极星环境修复网获悉,7月5日,重庆九龙坡区人民医院迁建项目(配套道路)土壤污染治理工程EPC总承包招标,本次招标项目工程总投资额约2520.28万元,合同估算金额约1913.54万元,招标人为重庆九龙半岛开发建设有限公司。本次招标范围主要包括设计、工程施工、专业设备材料采购等内容,具体范围为:包
平顶山市生态环境局就《平顶山市新污染物治理工作方案》公开征求意见,详情如下:平顶山市新污染物治理工作方案为深入贯彻落实省委、省政府决策部署,加强持久性有机污染物、内分泌干扰物、抗生素等新污染物治理,切实保障生态环境安全和人民健康,按照《河南省人民政府办公室关于印发河南省新污染物治
北极星环境修复网获悉,2023年4月21日,重钢炼钢厂原址地块(道路区域)土壤污染修复项目公布中标候选人,第一中标候选人为浙江卓锦环保科技股份有限公司,报价1456.025857万元。第二中标候选人为浙江益壤环保科技有限公司,第三中标候选人为中科鼎实环境工程有限公司。项目合同估算金额3000万元。项目
2023年2月23日,重庆市公共资源交易网发布重钢炼钢厂原址地块(道路区域)土壤污染修复项目招标公告,项目合同估算金额3000万元,不接受联合体投标,预计3月22日开标。项目招标人为重庆渝泓土地开发有限公司,本次招标范围主要为重钢炼钢厂原址地块内部分规划道路用地,占地面积约66117.28m2(99亩),
1月31日,河南省人民政府网站发文,印发《河南省新污染物治理工作方案》,制定建立健全新污染物治理体系,开展调查监测,评估新污染物环境风险状况等六大类共十余项工作任务,初步建立新污染物环境调查监测体系,建立省级重点管控新污染物清单,对重点管控新污染物实施禁止、限制、限排等环境风险管控
基于河北省某焦化厂前期土壤调查结果,选取约30000m2污染较重的区域开展苯土壤气通量专项调查并进行精细化风险评估,采用J&E-DED模型计算苯的室内呼吸暴露途径健康风险,并与基于J&E模型和实测土壤气挥发通量计算的风险结果进行比较.
摘要:根据生产工序的不同将焦化场地划分为堆煤区、炼焦区、化产区,共采集40组土壤样品,分析各类污染源作用下场地PAHs污染程度、分布、影响途径及组成特征等.结果表明,场地处于严重污染水平且BaP是健康风险首要关注污染物.按ΣPAHs含量中位数排序,化产区(1733.87mg/kg)炼焦区(32.86mg/kg)堆煤区(21.21m
玮元-A2019283云南省生态环境科学研究院科研技术项目研究与示范项目成交公告受云南省生态环境科学研究院的委托,云南玮元工程咨询有限公司于2019年10月31日上午10:30分在万宏路奥斯迪商务中心A座10楼评标室组织了“云南省生态环境科学研究院科研技术项目研究与示范项目”的竞争性磋商工作。根据磋商小
摘要:为了满足经济社会发展和人民群众的消费需求,我国每年生产出大量的焦炭。随着经济结构的调整以及城市发展规划的改变,大量焦化厂陆续搬迁原址,遗留下来的土壤中含有大量有毒有害物质。本文在分析了焦化厂炼焦各个环节所产生的污染物基础上,从水平和垂直两个方面探讨了焦化厂场地土壤污染分布特
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!