北极星

搜索历史清空

  • 水处理
您的位置:环保水处理工业废水技术正文

厌氧氨氧化——水处理界燃起的新星

2017-04-27 09:49来源:南京大学环境学院关键词:污水处理厌氧氨氧化厌氧氨氧化细菌收藏点赞

投稿

我要投稿

3. 温度对厌氧氨氧化的影响

温度是影响厌氧氨氧化菌的重要因素之一。从微生物的角度看,细菌都有最适反应温度,过高或过低都会影响细菌的活性,从而影响厌氧氨氧化率。从反应活化能的角度来看,一般活化能越小,化学反应速率越高。厌氧氨氧化反应的活化能为7 0 KJ˙mol-1,与亚硝酸菌的反应活化能基本相当[3]。厌氧氨氧化反应属于容易进行的化学反应;但同时属于较难进行的生物反应,它对温度变化比较敏感。Jetten等论述厌氧氨氧化适宜温度为20~43℃,低于15℃时,厌氧氨氧化速率较低;在15~37.5℃,厌氧氨氧化速率不断升高;当T= 37.5℃时,氨氮和亚硝酸氮都达到最大转化速率;当T>37.5℃时,厌氧氨氧化速率开始慢慢下降;当温度超过40℃,厌氧氨氧化活性剧降。

4. 泥龄控制对厌氧氨氧化的影响

由于厌氧氨氧化菌生长缓慢,细胞产率低,污泥产量少,所以维持长泥龄对厌氧氨氧化工艺较重要。Strous等人在序批式反应器SBR中培养厌氧氨氧化菌发现,在细菌的对数生长阶段,细胞(以蛋白计)的平均氨转换速率为20±6 nmol(mg˙min)-1,最大氨转换速率为45±6 nmol(mg˙min)-1。根据最大活性和细胞产率,推算最大生长速率为0.0027±0.005 h-1(倍增时间是11天),因此厌氧氨氧化的泥龄比较长,水力停留时间在一定条件下也应该较长。

5. 不同生态系统中的厌氧氨氧化

虽然一直以来均有厌氧氨氧化(Anammox)的报道,但是直到2002年,Thamdrup 和 Dalsgaard等人利用同位素示踪技术首次证实了Anammox在海洋沉积物中的存在也就是自然环境中的存在。Anammox过程并不仅局限于海洋和咸水环境,也广泛存在于河流湖泊等淡水系统中。湖泊、河流等的沉积物中,氨氮、硝氮和亚硝氮的共存为厌氧氨氧化提供了有利的环境。徐徽等在太湖梅梁湾柱样的脱氮过程研究中,发现反硝化过程贡献率要强于厌氧氨氧化过程。Trimmer等人研究了英国Thames河口沉积物中厌氧氨氧化过程,发现该过程对氮气产生量的贡献在1~8%之间,且与有机质含量存在显著的正相关性。Catarina Teixeira[7]等人研究了葡萄牙三条河流(Cávado River、Ave River和Douro River)河口沉积物中厌氧氨氧化过程,发现NO3-的存在会刺激反硝化作用,而NO2-的增加更有利于厌氧氨氧化过程;另一方面,当底泥中盐度较低时,NH4+的增加会抑制Anammox过程。 Lidong Shen等人对南京水稻田中的厌氧氨氧化研究发现,Anammox过程对农田土壤的N损失贡献率在2.1~18.8%,每年总氮损失的贡献在6.1~32.9gN˙m-1。Lijun Hou等人对中国沿海湿地的厌氧氨氧化的研究表明,中国沿海湿地厌氧氨氧化细菌种类丰富,包括Candidatus Scalindua,Kuenenia,Brocadia,and Jettenia,并且温度是影响厌氧氨氧化细菌组成、活度及生物多样性的重要因素;厌氧氨氧化占所研究地区氮去除的3.8~10.7%的贡献率。

6. Anammox细菌在污水处理工艺中的应用

传统的污水处理工艺采用硝化-反硝化作用,由于利用的微生物和运行条件的不同,硝化和反硝化两个过程在时间和空间上是分开的,或者是在不同条件的反应器内进行。虽然这些传统工艺在废水生物脱氮领域目前还起着主导作用,但这些工艺本身也存在较多问题,如:工艺流程较长,占地面积大,基建投资高;由于硝化菌群增殖速度慢而难以维持较高的生物浓度;为维持较高的生物浓度及获得良好的脱氮效果,系统必须同时进行污泥和硝化液回流;其抗冲击负荷能力较弱,高浓度NH4+和NO2-废水会抑制硝化菌生长;另外,硝化过程中产生的酸度需要投加碱中和。这些措施既增加了运行的复杂性和运行成本,又可能造成二次污染等。Anammox 细菌的氨氧化过程一方面大大缩短了氨氮氧化还原到氮气的过程,从而减少了生物脱氮的物质、能量耗费,另一方面为生物脱氮技术的进步提供了新的发展平台。

投稿与新闻线索:电话:0335-3030550, 邮箱:huanbaowang#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

污水处理查看更多>厌氧氨氧化查看更多>厌氧氨氧化细菌查看更多>